論文の概要: G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition
- arxiv url: http://arxiv.org/abs/2503.00476v1
- Date: Sat, 01 Mar 2025 13:02:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:17:04.147336
- Title: G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition
- Title(参考訳): G-OSR: グラフオープンセット認識のための総合ベンチマーク
- Authors: Yicong Dong, Rundong He, Guangyao Chen, Wentao Zhang, Zhongyi Han, Jieming Shi, Yilong Yin,
- Abstract要約: ノードレベルとグラフレベルの両方でグラフオープンセット認識(GOSR)手法を評価するベンチマークである textbfG-OSR を導入する。
結果は、現在のGOSR手法の一般化可能性と限界に関する重要な洞察を与える。
- 参考スコア(独自算出の注目度): 54.45837774534411
- License:
- Abstract: Graph Neural Networks (GNNs) have achieved significant success in machine learning, with wide applications in social networks, bioinformatics, knowledge graphs, and other fields. Most research assumes ideal closed-set environments. However, in real-world open-set environments, graph learning models face challenges in robustness and reliability due to unseen classes. This highlights the need for Graph Open-Set Recognition (GOSR) methods to address these issues and ensure effective GNN application in practical scenarios. Research in GOSR is in its early stages, with a lack of a comprehensive benchmark spanning diverse tasks and datasets to evaluate methods. Moreover, traditional methods, Graph Out-of-Distribution Detection (GOODD), GOSR, and Graph Anomaly Detection (GAD) have mostly evolved in isolation, with little exploration of their interconnections or potential applications to GOSR. To fill these gaps, we introduce \textbf{G-OSR}, a comprehensive benchmark for evaluating GOSR methods at both the node and graph levels, using datasets from multiple domains to ensure fair and standardized comparisons of effectiveness and efficiency across traditional, GOODD, GOSR, and GAD methods. The results offer critical insights into the generalizability and limitations of current GOSR methods and provide valuable resources for advancing research in this field through systematic analysis of diverse approaches.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、ソーシャルネットワーク、バイオインフォマティクス、知識グラフ、その他の分野で広く応用されている機械学習において、大きな成功を収めている。
ほとんどの研究は理想的な閉集合環境を前提としている。
しかし、現実世界のオープンセット環境では、グラフ学習モデルは、目に見えないクラスのために堅牢性と信頼性の課題に直面している。
このことは、これらの問題に対処し、実用的なシナリオにおける効果的なGNNアプリケーションを保証するために、グラフオープンセット認識(GOSR)メソッドの必要性を強調している。
GOSRの研究は初期段階にあり、さまざまなタスクやデータセットにまたがる包括的なベンチマークが欠如している。
さらに、従来の方法では、GOODD(Graph Out-of-Distribution Detection)、GOSR(Graph Anomaly Detection)、GAD(Graph Anomaly Detection)が独立して進化しており、GOSRへの相互接続や潜在的な応用についてはほとんど調査されていない。
これらのギャップを埋めるために,従来のGOODD,GOSR,GADの各手法における有効性と効率の公正かつ標準化された比較を確保するために,複数のドメインからのデータセットを用いて,ノードレベルとグラフレベルの両方でGOSRメソッドを評価するための包括的なベンチマークである \textbf{G-OSR} を導入する。
この結果は、現在のGOSR手法の一般化可能性と限界に関する重要な洞察を与え、多様なアプローチの体系的な分析を通じて、この分野の研究を進めるための貴重な資源を提供する。
関連論文リスト
- Out-of-Distribution Detection on Graphs: A Survey [58.47395497985277]
グラフアウト・オブ・ディストリビューション(GOOD)検出は、トレーニング中に見られる分布から逸脱するグラフデータを特定することに焦点を当てる。
既存の手法を,拡張ベース,再構築ベース,情報伝達ベース,分類ベースという4つのタイプに分類する。
本稿では,グラフデータによるユニークな課題を浮き彫りにして,実践的応用と理論的基礎について論じる。
論文 参考訳(メタデータ) (2025-02-12T04:07:12Z) - OpenGU: A Comprehensive Benchmark for Graph Unlearning [24.605943688948038]
Graph Unlearning(GU)は、プライバシに敏感なアプリケーションにとって重要なソリューションとして登場した。
最初のGUベンチマークであるOpenGUでは、16のSOTA GUアルゴリズムと37のマルチドメインデータセットが統合されている。
既存のGUメソッドに関する決定的な結論は8ドルもしますが、その一方で、その制限について貴重な洞察を得ています。
論文 参考訳(メタデータ) (2025-01-06T02:57:32Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Deep Graph Anomaly Detection: A Survey and New Perspectives [86.84201183954016]
グラフ異常検出(GAD)は、異常なグラフインスタンス(ノード、エッジ、サブグラフ、グラフ)を特定することを目的とする。
ディープラーニングアプローチ、特にグラフニューラルネットワーク(GNN)は、GADにとって有望なパラダイムとして現れています。
論文 参考訳(メタデータ) (2024-09-16T03:05:11Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
大規模"事前訓練と迅速な学習"パラダイムは、顕著な適応性を示している。
この調査は、この分野における100以上の関連する研究を分類し、一般的な設計原則と最新の応用を要約する。
論文 参考訳(メタデータ) (2024-08-26T06:36:42Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - Graph Learning based Recommender Systems: A Review [111.43249652335555]
グラフ学習ベースのレコメンダーシステム(GLRS)は、高度なグラフ学習アプローチを使用して、ユーザーの好みと意図、および推奨項目の特性をモデル化します。
本稿では,グラフに基づく表現から重要な知識を抽出し,レコメンデーションの正確性,信頼性,説明性を向上する方法について論じることにより,GLRSの体系的なレビューを行う。
論文 参考訳(メタデータ) (2021-05-13T14:50:45Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
私たちは、一般的な埋め込みアプローチのセットに対して、アプリケーション指向の視点を提供します。
実世界のグラフ特性に関する表現力を評価する。
GRLアプローチは現実のシナリオでは定義が困難であることが示唆された。
論文 参考訳(メタデータ) (2020-06-18T03:19:43Z) - Graph Neighborhood Attentive Pooling [0.5493410630077189]
ネットワーク表現学習(NRL)は,高次元およびスパースグラフの低次元ベクトル表現を学習するための強力な手法である。
本稿では,ノード近傍の異なる部分への入場を注意型プールネットワークを用いて学習するGAPと呼ばれる新しい文脈依存アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-28T15:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。