論文の概要: Sequence Complementor: Complementing Transformers For Time Series Forecasting with Learnable Sequences
- arxiv url: http://arxiv.org/abs/2501.02735v1
- Date: Mon, 06 Jan 2025 03:08:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:06:36.153284
- Title: Sequence Complementor: Complementing Transformers For Time Series Forecasting with Learnable Sequences
- Title(参考訳): Sequence Complementor:学習可能なシーケンスによる時系列予測のためのコンプリメントトランスフォーマー
- Authors: Xiwen Chen, Peijie Qiu, Wenhui Zhu, Huayu Li, Hao Wang, Aristeidis Sotiras, Yalin Wang, Abolfazl Razi,
- Abstract要約: シーケンス表現の表現能力は、時間予測においてTransformerのパフォーマンスに影響を与える重要な要因であることがわかった。
本稿では,シークエンス・コンプリメンタを用いた新しいアテンション機構を提案し,情報理論の観点から実現可能であることを示す。
- 参考スコア(独自算出の注目度): 5.244482076690776
- License:
- Abstract: Since its introduction, the transformer has shifted the development trajectory away from traditional models (e.g., RNN, MLP) in time series forecasting, which is attributed to its ability to capture global dependencies within temporal tokens. Follow-up studies have largely involved altering the tokenization and self-attention modules to better adapt Transformers for addressing special challenges like non-stationarity, channel-wise dependency, and variable correlation in time series. However, we found that the expressive capability of sequence representation is a key factor influencing Transformer performance in time forecasting after investigating several representative methods, where there is an almost linear relationship between sequence representation entropy and mean square error, with more diverse representations performing better. In this paper, we propose a novel attention mechanism with Sequence Complementors and prove feasible from an information theory perspective, where these learnable sequences are able to provide complementary information beyond current input to feed attention. We further enhance the Sequence Complementors via a diversification loss that is theoretically covered. The empirical evaluation of both long-term and short-term forecasting has confirmed its superiority over the recent state-of-the-art methods.
- Abstract(参考訳): 導入以来、トランスフォーマーは時系列予測において従来のモデル(例えばRNN、MLP)から開発軌跡を移行してきた。
フォローアップ研究は、非定常性、チャネル依存性、時系列における変数相関といった特別な問題に対処するためのトランスフォーマーを適応させるために、トークン化と自己アテンションモジュールの変更に大きく関わってきた。
しかし,シーケンス表現の表現能力は,複数の代表的な手法を調べた結果,トランスフォーマーの性能に影響を及ぼす重要な要因であることが判明した。
本稿では,これらの学習可能なシーケンスが,現在の入力以上の補完情報を提供して注意を養うことができる情報理論の観点から,シークエンスコンプリメンタを用いた新しいアテンション機構を提案する。
我々は、理論的にカバーされる多様化損失により、シーケンス補完体をさらに強化する。
長期予測と短期予測の両方を実証的に評価した結果、最近の最先端手法よりも優位性が確認されている。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
非定常PGDSは、基礎となる遷移行列が時間とともに進化できるように提案されている。
後続シミュレーションを行うために, 完全共役かつ効率的なギブスサンプリング装置を開発した。
実験により,提案した非定常PGDSは,関連するモデルと比較して予測性能が向上することを示した。
論文 参考訳(メタデータ) (2024-02-26T04:39:01Z) - CSformer: Combining Channel Independence and Mixing for Robust Multivariate Time Series Forecasting [3.6814181034608664]
本稿では,チャネル独立戦略と時系列解析の混合手法を提案する。
CSformerは,2段階のマルチヘッド自己保持機構を備えた新しいフレームワークである。
本フレームワークは,シーケンスアダプタとチャネルアダプタを効果的に組み込んで,重要な情報を識別するモデルの能力を大幅に向上させる。
論文 参考訳(メタデータ) (2023-12-11T09:10:38Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
本稿では,CARD(Channel Aligned Robust Blend Transformer)という特殊なトランスを設計する。
まず、CARDはチャネルに沿ったアテンション構造を導入し、信号間の時間的相関をキャプチャする。
第二に、マルチスケール知識を効率的に活用するために、異なる解像度のトークンを生成するトークンブレンドモジュールを設計する。
第3に,潜在的な過度な問題を軽減するため,時系列予測のためのロバストな損失関数を導入する。
論文 参考訳(メタデータ) (2023-05-20T05:16:31Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - DRAformer: Differentially Reconstructed Attention Transformer for
Time-Series Forecasting [7.805077630467324]
時系列予測は、機器ライフサイクル予測、天気予報、交通フロー予測など、多くの現実シナリオにおいて重要な役割を果たす。
最近の研究から、様々なトランスフォーマーモデルが時系列予測において顕著な結果を示したことが観察できる。
しかし、時系列予測タスクにおけるトランスフォーマーモデルの性能を制限する問題がまだ残っている。
論文 参考訳(メタデータ) (2022-06-11T10:34:29Z) - Transformers predicting the future. Applying attention in next-frame and
time series forecasting [0.0]
繰り返しニューラルネットワークは、最近まで、シーケンス内のタイムリーな依存関係をキャプチャする最良の方法の1つでした。
トランスフォーマーの導入により、RNNのない注意機構しか持たないアーキテクチャが、様々なシーケンス処理タスクの結果を改善することが証明された。
論文 参考訳(メタデータ) (2021-08-18T16:17:29Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。