論文の概要: Enhancing Trustworthiness of Graph Neural Networks with Rank-Based Conformal Training
- arxiv url: http://arxiv.org/abs/2501.02767v1
- Date: Mon, 06 Jan 2025 05:19:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:39.848974
- Title: Enhancing Trustworthiness of Graph Neural Networks with Rank-Based Conformal Training
- Title(参考訳): ランクベースコンフォーマルトレーニングによるグラフニューラルネットワークの信頼性向上
- Authors: Ting Wang, Zhixin Zhou, Rui Luo,
- Abstract要約: 等角予測は統計的に保証された不確実性推定を生成することができる。
本稿では,GNN(RCP-GNN)のトレーニングフレームワークにおけるランクベースのCPを提案し,信頼性の高い不確実性推定を行う。
- 参考スコア(独自算出の注目度): 17.120502204791407
- License:
- Abstract: Graph Neural Networks (GNNs) has been widely used in a variety of fields because of their great potential in representing graph-structured data. However, lacking of rigorous uncertainty estimations limits their application in high-stakes. Conformal Prediction (CP) can produce statistically guaranteed uncertainty estimates by using the classifier's probability estimates to obtain prediction sets, which contains the true class with a user-specified probability. In this paper, we propose a Rank-based CP during training framework to GNNs (RCP-GNN) for reliable uncertainty estimates to enhance the trustworthiness of GNNs in the node classification scenario. By exploiting rank information of the classifier's outcome, prediction sets with desired coverage rate can be efficiently constructed. The strategy of CP during training with differentiable rank-based conformity loss function is further explored to adapt prediction sets according to network topology information. In this way, the composition of prediction sets can be guided by the goal of jointly reducing inefficiency and probability estimation errors. Extensive experiments on several real-world datasets show that our model achieves any pre-defined target marginal coverage while significantly reducing the inefficiency compared with state-of-the-art methods.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,グラフ構造化データを表現する大きな可能性から,さまざまな分野で広く利用されている。
しかし、厳密な不確実性推定の欠如は、その適用を高い評価で制限する。
整形予測(CP)は、分類器の確率推定を用いて統計的に保証された不確実性推定を生成し、ユーザが特定した確率を持つ真のクラスを含む予測セットを得る。
本稿では,ノード分類シナリオにおけるGNNの信頼性を高めるため,信頼性の高い不確実性推定のためのトレーニングフレームワークのランクベースCPを提案する。
分類器の結果のランク情報を利用することにより、所望のカバレッジレートの予測セットを効率的に構築することができる。
さらに、ネットワークトポロジ情報に基づいて予測セットを適応させるために、階数に基づく等式損失関数を持つトレーニング中のCPの戦略について検討した。
このようにして、予測セットの構成は、非効率性と確率推定誤差を共同で低減するという目標によって導かれる。
いくつかの実世界のデータセットに対する大規模な実験により、我々のモデルは定義済みの限界範囲の範囲を達成できる一方で、最先端の手法と比較して非効率を著しく低減できることが示された。
関連論文リスト
- RoCP-GNN: Robust Conformal Prediction for Graph Neural Networks in Node-Classification [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データの結果を予測する強力なツールとして登場した。
この問題に対処する一つの方法は、事前に定義された確率マージンを持つ真のラベルを含む予測セットを提供することである。
我々は,GNNに対するロバスト・コンフォーマル予測(RoCP-GNN)と呼ばれる新しい手法を提案する。
我々のアプローチはグラフベース半教師付き学習(SSL)の領域における予測の不確実性を定量化しながら、任意の予測的GNNモデルで結果を確実に予測する。
論文 参考訳(メタデータ) (2024-08-25T12:51:19Z) - Conditional Shift-Robust Conformal Prediction for Graph Neural Network [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データの結果を予測する強力なツールとして登場した。
有効性にもかかわらず、GNNは堅牢な不確実性推定を提供する能力に制限がある。
本稿では,GNNに対する条件シフトロバスト(CondSR)の共形予測を提案する。
論文 参考訳(メタデータ) (2024-05-20T11:47:31Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに基づく強力な機械学習予測モデルである。
GNNには厳密な不確実性見積が欠如しており、エラーのコストが重要な設定での信頼性の高いデプロイメントが制限されている。
本稿では,共形予測(CP)をグラフベースモデルに拡張した共形GNN(CF-GNN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T21:38:23Z) - Distribution Free Prediction Sets for Node Classification [0.0]
我々は、共形予測の最近の進歩を活用し、帰納学習シナリオにおけるノード分類のための予測セットを構築する。
我々は、一般的なGNNモデルを用いた標準ベンチマークデータセットの実験を通して、共形予測の簡単な応用よりも、より厳密でより良い予測セットを提供することを示す。
論文 参考訳(メタデータ) (2022-11-26T12:54:45Z) - Predicting Deep Neural Network Generalization with Perturbation Response
Curves [58.8755389068888]
トレーニングネットワークの一般化能力を評価するための新しいフレームワークを提案する。
具体的には,一般化ギャップを正確に予測するための2つの新しい尺度を提案する。
PGDL(Predicting Generalization in Deep Learning)のNeurIPS 2020コンペティションにおけるタスクの大部分について、現在の最先端の指標よりも優れた予測スコアを得る。
論文 参考訳(メタデータ) (2021-06-09T01:37:36Z) - Failure Prediction by Confidence Estimation of Uncertainty-Aware
Dirichlet Networks [6.700873164609009]
不確実性を考慮したディープディリクレニューラルネットワークは、真のクラス確率計量における正しい予測と誤予測の信頼性の分離を改善できることが示されている。
不均衡とTCP制約を考慮に入れながら、予測信頼度と一致させることで、真のクラス確率を学習するための新しい基準を提案する。
論文 参考訳(メタデータ) (2020-10-19T21:06:45Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
リカレントニューラルネットワーク(RNN)は、シーケンシャルおよび時系列データのモデリングに有効である。
RNNにおける既存の不確実性定量化のアプローチは、主にベイズ法に基づいている。
a)モデルトレーニングに干渉せず、その精度を損なうことなく、(b)任意のRNNアーキテクチャに適用し、(c)推定不確かさ間隔に関する理論的カバレッジ保証を提供する。
論文 参考訳(メタデータ) (2020-06-20T22:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。