論文の概要: Multi-Agent Path Finding under Limited Communication Range Constraint via Dynamic Leading
- arxiv url: http://arxiv.org/abs/2501.02770v1
- Date: Mon, 06 Jan 2025 05:21:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:05:49.224520
- Title: Multi-Agent Path Finding under Limited Communication Range Constraint via Dynamic Leading
- Title(参考訳): 動的リードによる限られた通信範囲制約下でのマルチエージェント経路探索
- Authors: Hoang-Dung Bui, Erion Plaku, Gregoy J. Stein,
- Abstract要約: 本稿では,限られた通信範囲制約下でのマルチエージェントパス探索問題に対処する新しい枠組みを提案する。
我々は,進行が進行しない場合に,経路計画中にリードエージェントを動的に再選択できる動的リード型マルチエージェントパス探索を開発する。
実験の結果、最大25のエージェントを5つの環境タイプで90%以上の成功率で処理できるフレームワークの有効性が示された。
- 参考スコア(独自算出の注目度): 3.522950356329991
- License:
- Abstract: This paper proposes a novel framework to handle a multi-agent path finding problem under a limited communication range constraint, where all agents must have a connected communication channel to the rest of the team. Many existing approaches to multi-agent path finding (e.g., leader-follower platooning) overcome computational challenges of planning in this domain by planning one agent at a time in a fixed order. However, fixed leader-follower approaches can become stuck during planning, limiting their practical utility in dense-clutter environments. To overcome this limitation, we develop dynamic leading multi-agent path finding, which allows for dynamic reselection of the leading agent during path planning whenever progress cannot be made. The experiments show the efficiency of our framework, which can handle up to 25 agents with more than 90% success-rate across five environment types where baselines routinely fail.
- Abstract(参考訳): 本稿では,制限された通信範囲制約の下でのマルチエージェントパス探索問題に対処する新しい枠組みを提案する。
マルチエージェントパス探索(例えば、リーダー・フォロワー小隊)に対する既存の多くのアプローチは、一定順序で一度に1つのエージェントを計画することで、この領域で計画する際の計算上の課題を克服する。
しかし、固定されたリーダ・フォロワーアプローチは計画中に立ち往生し、密集したクラッタ環境での実用性を制限することができる。
この制限を克服するため,進行が進行しない場合にも,経路計画中にリードエージェントを動的に再選択できる動的リード型マルチエージェントパス探索を開発した。
実験の結果,ベースラインが正常に失敗する5つの環境タイプに対して,最大25のエージェントを90%以上の成功率で処理できるフレームワークの有効性が示された。
関連論文リスト
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - Fault-Tolerant Offline Multi-Agent Path Planning [5.025654873456756]
本研究では,複数のエージェントが実行時にクラッシュする可能性のある新しいグラフパス計画問題について検討し,ワークスペースの一部をブロックする。
我々の設定では、エージェントは隣のクラッシュしたエージェントを検出し、実行時に後続のパスを変更することができる。その目的は、各エージェントに対して一連のパスを作成し、ルールを切り替えることであり、すべての正しいエージェントが衝突やデッドロックなしで目的地に到達することを保証することである。
論文 参考訳(メタデータ) (2022-11-25T05:58:32Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
汎用ロボットは、現実世界の非構造環境において困難なタスクを完了するために、多様な行動レパートリーを必要とする。
この問題に対処するため、目標条件強化学習は、コマンド上の幅広いタスクの目標に到達可能なポリシーを取得することを目的としている。
本研究では,長期的課題に対する目標条件付き政策を実践的に訓練する手法であるPlanning to Practiceを提案する。
論文 参考訳(メタデータ) (2022-05-17T06:58:17Z) - DSDF: An approach to handle stochastic agents in collaborative
multi-agent reinforcement learning [0.0]
ロボットの機能低下や老化によって引き起こされるエージェントの真偽が、協調の不確実性にどのように寄与するかを示す。
DSDFは不確実性に応じてエージェントの割引係数を調整し,その値を用いて個々のエージェントのユーティリティネットワークを更新する。
論文 参考訳(メタデータ) (2021-09-14T12:02:28Z) - Decentralised Approach for Multi Agent Path Finding [6.599344783327053]
MAPF (Multi Agent Path Finding) は、空間的に拡張されたエージェントに対する競合のない経路の同定を必要とする。
これらは、Convoy Movement ProblemやTraning Schedulingといった現実世界の問題に適用できる。
提案手法であるDecentralized Multi Agent Path Finding (DeMAPF) は、MAPFを経路計画と割り当ての問題の系列として扱う。
論文 参考訳(メタデータ) (2021-06-03T18:07:26Z) - Scalable, Decentralized Multi-Agent Reinforcement Learning Methods
Inspired by Stigmergy and Ant Colonies [0.0]
分散型マルチエージェント学習と計画に対する新しいアプローチを検討する。
特に、この方法はアリコロニーの凝集、協調、行動に触発されている。
このアプローチは、単一エージェントRLと、マルチエージェントパス計画と環境修正のためのアリコロニーに触発された分散型のスティグメロジカルアルゴリズムを組み合わせたものである。
論文 参考訳(メタデータ) (2021-05-08T01:04:51Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z) - Implicit Multiagent Coordination at Unsignalized Intersections via
Multimodal Inference Enabled by Topological Braids [15.024091680310109]
信号のない交差点における合理的な非コミュニケーションエージェント間のナビゲーションに焦点をあてる。
我々はトポロジカルブレイドの形式主義を用いてコンパクトで解釈可能な方法で共同行動のモードを表現する。
我々は,新たなマルチエージェント動作のモードにおける不確実性を低減するための行動を生成する分散計画アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-04-10T19:01:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。