論文の概要: Hierarchical Retrieval with Evidence Curation for Open-Domain Financial Question Answering on Standardized Documents
- arxiv url: http://arxiv.org/abs/2505.20368v2
- Date: Mon, 02 Jun 2025 01:12:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-03 13:48:30.004551
- Title: Hierarchical Retrieval with Evidence Curation for Open-Domain Financial Question Answering on Standardized Documents
- Title(参考訳): 標準化文書に対するオープン・ドメイン・ファイナンシャル・質問に対するエビデンス・キュレーションによる階層的検索
- Authors: Jaeyoung Choe, Jihoon Kim, Woohwan Jung,
- Abstract要約: 標準化されたドキュメントは、反復的なボイラープレートテキストや同様のテーブル構造など、同様のフォーマットを共有している。
この類似性により、従来のRAGメソッドは、ほぼ重複したテキストを誤識別し、精度と完全性を損なう重複検索につながる。
本稿では,これらの問題に対処するためのEvidence Curationフレームワークを用いた階層検索手法を提案する。
- 参考スコア(独自算出の注目度): 17.506934704019226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) based large language models (LLMs) are widely used in finance for their excellent performance on knowledge-intensive tasks. However, standardized documents (e.g., SEC filing) share similar formats such as repetitive boilerplate texts, and similar table structures. This similarity forces traditional RAG methods to misidentify near-duplicate text, leading to duplicate retrieval that undermines accuracy and completeness. To address these issues, we propose the Hierarchical Retrieval with Evidence Curation (HiREC) framework. Our approach first performs hierarchical retrieval to reduce confusion among similar texts. It first retrieve related documents and then selects the most relevant passages from the documents. The evidence curation process removes irrelevant passages. When necessary, it automatically generates complementary queries to collect missing information. To evaluate our approach, we construct and release a Large-scale Open-domain Financial (LOFin) question answering benchmark that includes 145,897 SEC documents and 1,595 question-answer pairs. Our code and data are available at https://github.com/deep-over/LOFin-bench-HiREC.
- Abstract(参考訳): Retrieval-augmented Generation (RAG) ベースの大規模言語モデル (LLM) は、知識集約的なタスクにおける優れたパフォーマンスのために、金融において広く使われている。
しかし、標準化された文書(例:SECの申請書)は、反復的なボイラープレートテキストや同様のテーブル構造などの類似のフォーマットを共有している。
この類似性により、従来のRAGメソッドは、ほぼ重複したテキストを誤識別し、精度と完全性を損なう重複検索につながる。
これらの問題に対処するため,我々はHiREC(Hierarchical Retrieval with Evidence Curation)フレームワークを提案する。
提案手法はまず,類似したテキスト間の混同を低減するために階層的検索を行う。
関連ドキュメントを検索し、ドキュメントから最も関連性の高いパスを選択する。
証拠のキュレーションプロセスは、無関係な通路を除去します。
必要であれば、補完的なクエリを自動的に生成して、不足した情報を収集する。
提案手法を評価するために,145,897件のSEC文書と1,595件の質問応答ペアを含む大規模オープンドメインファイナンシャル(LOFin)質問応答ベンチマークを構築し,リリースする。
私たちのコードとデータはhttps://github.com/deep-over/LOFin-bench-HiRECで公開されています。
関連論文リスト
- BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
BRIGHTは、関係する文書を検索するために、集中的推論を必要とする最初のテキスト検索ベンチマークである。
私たちのデータセットは、経済学、心理学、数学、コーディングなど、さまざまな領域にまたがる1,384の現実世界のクエリで構成されています。
クエリに関する明示的な推論を取り入れることで、検索性能が最大12.2ポイント向上することを示す。
論文 参考訳(メタデータ) (2024-07-16T17:58:27Z) - MILL: Mutual Verification with Large Language Models for Zero-Shot Query Expansion [39.24969189479343]
本稿では,大規模言語モデル(LLM)を相互検証に用いるゼロショットクエリ拡張フレームワークを提案する。
提案手法は完全にゼロショットであり,その有効性を示すために3つの公開ベンチマークデータセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2023-10-29T16:04:10Z) - DAPR: A Benchmark on Document-Aware Passage Retrieval [57.45793782107218]
我々は,このタスクemphDocument-Aware Passage Retrieval (DAPR)を提案する。
State-of-The-Art(SoTA)パスレトリバーのエラーを分析しながら、大きなエラー(53.5%)は文書コンテキストの欠如に起因する。
提案するベンチマークにより,検索システムの開発・比較を今後行うことができる。
論文 参考訳(メタデータ) (2023-05-23T10:39:57Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
本稿では,ジェネレーション方式で証拠を検索する最初のシステムであるGEREを提案する。
FEVERデータセットの実験結果は、GEREが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-12T03:49:35Z) - Improving Query Representations for Dense Retrieval with Pseudo
Relevance Feedback [29.719150565643965]
本稿では,疑似関連性フィードバック(PRF)を用いて高密度検索のためのクエリ表現を改善する新しいクエリエンコーダであるANCE-PRFを提案する。
ANCE-PRF は BERT エンコーダを使用し、検索モデルである ANCE からクエリとトップ検索されたドキュメントを消費し、関連ラベルから直接クエリの埋め込みを生成する。
PRFエンコーダは、学習された注意機構でノイズを無視しながら、PRF文書から関連および補完的な情報を効果的にキャプチャする。
論文 参考訳(メタデータ) (2021-08-30T18:10:26Z) - Open Question Answering over Tables and Text [55.8412170633547]
オープンな質問応答(QA)では、質問に対する回答は、質問に対する回答を含む可能性のある文書を検索して分析することによって生成される。
ほとんどのオープンQAシステムは、構造化されていないテキストからのみ情報を取得することを検討している。
我々は,このタスクの性能を評価するために,新しい大規模データセット Open Table-and-Text Question Answering (OTT-QA) を提案する。
論文 参考訳(メタデータ) (2020-10-20T16:48:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。