論文の概要: HOGSA: Bimanual Hand-Object Interaction Understanding with 3D Gaussian Splatting Based Data Augmentation
- arxiv url: http://arxiv.org/abs/2501.02845v1
- Date: Mon, 06 Jan 2025 08:48:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:07:05.957909
- Title: HOGSA: Bimanual Hand-Object Interaction Understanding with 3D Gaussian Splatting Based Data Augmentation
- Title(参考訳): HOGSA:3次元ガウススプレイティングに基づく両手・物体のインタラクション理解
- Authors: Wentian Qu, Jiahe Li, Jian Cheng, Jian Shi, Chenyu Meng, Cuixia Ma, Hongan Wang, Xiaoming Deng, Yinda Zhang,
- Abstract要約: 本稿では,2次元手動物体間相互作用のための3次元ガウススプラッティングに基づくデータ拡張フレームワークを提案する。
メッシュベースの3DGSを用いてオブジェクトとハンドをモデル化し、マルチレゾリューション入力画像によるレンダリングのぼかし問題に対処する。
両手オブジェクトに対する片手握りポーズ最適化モジュールを拡張し、両手オブジェクト間相互作用のさまざまなポーズを生成する。
- 参考スコア(独自算出の注目度): 29.766317710266765
- License:
- Abstract: Understanding of bimanual hand-object interaction plays an important role in robotics and virtual reality. However, due to significant occlusions between hands and object as well as the high degree-of-freedom motions, it is challenging to collect and annotate a high-quality, large-scale dataset, which prevents further improvement of bimanual hand-object interaction-related baselines. In this work, we propose a new 3D Gaussian Splatting based data augmentation framework for bimanual hand-object interaction, which is capable of augmenting existing dataset to large-scale photorealistic data with various hand-object pose and viewpoints. First, we use mesh-based 3DGS to model objects and hands, and to deal with the rendering blur problem due to multi-resolution input images used, we design a super-resolution module. Second, we extend the single hand grasping pose optimization module for the bimanual hand object to generate various poses of bimanual hand-object interaction, which can significantly expand the pose distribution of the dataset. Third, we conduct an analysis for the impact of different aspects of the proposed data augmentation on the understanding of the bimanual hand-object interaction. We perform our data augmentation on two benchmarks, H2O and Arctic, and verify that our method can improve the performance of the baselines.
- Abstract(参考訳): ロボット工学やバーチャルリアリティーにおいて、両手物体の相互作用を理解することが重要な役割を担っている。
しかし,手と物体間の大きな介在や高次自由度運動のため,高品質で大規模なデータセットを収集・注釈することは困難であり,両物間相互作用関連ベースラインのさらなる改善を妨げている。
本研究では,既存のデータセットを大規模フォトリアリスティックデータに拡張し,手動のポーズや視点を多用した3次元ガウス・スプレイティングに基づくバイマンハンドオブジェクトインタラクションのためのデータ拡張フレームワークを提案する。
まず、メッシュベースの3DGSを用いてオブジェクトとハンドをモデル化し、マルチレゾリューション入力画像によるレンダリングのぼかし問題に対処し、スーパーレゾリューションモジュールを設計する。
第2に、単手握りポーズ最適化モジュールを拡張して、両手オブジェクト間相互作用のさまざまなポーズを生成することにより、データセットのポーズ分布を大幅に拡張することができる。
第3に,提案したデータ拡張の異なる側面が両手物体の相互作用の理解に与える影響を解析する。
我々はH2Oとアークティックという2つのベンチマークでデータ拡張を行い、この手法がベースラインの性能を向上させることを検証した。
関連論文リスト
- Dynamic Reconstruction of Hand-Object Interaction with Distributed Force-aware Contact Representation [52.36691633451968]
ViTaM-Dは動的手動物体相互作用再構成のための視覚触覚フレームワークである。
DF-Fieldは分散力認識型接触表現モデルである。
剛性および変形性のある物体再構成におけるViTaM-Dの優れた性能について検討した。
論文 参考訳(メタデータ) (2024-11-14T16:29:45Z) - Learning Interaction-aware 3D Gaussian Splatting for One-shot Hand Avatars [47.61442517627826]
本稿では,3次元ガウススプラッティング(GS)と単一画像入力と手を相互作用するアニマタブルアバターを提案する。
提案手法は大規模なInterHand2.6Mデータセットの広範な実験により検証される。
論文 参考訳(メタデータ) (2024-10-11T14:14:51Z) - 3D Hand Reconstruction via Aggregating Intra and Inter Graphs Guided by
Prior Knowledge for Hand-Object Interaction Scenario [8.364378460776832]
モデルベースおよびモデルフリーアプローチの利点を生かした3次元ハンドリコンストラクションネットワークを提案する。
まず,2次元関節から直接のMANOポーズパラメータ回帰モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-04T05:11:26Z) - HOLD: Category-agnostic 3D Reconstruction of Interacting Hands and
Objects from Video [70.11702620562889]
HOLD - 単分子インタラクションビデオから手とオブジェクトを共同で再構成する最初のカテゴリーに依存しない方法。
我々は,3次元手と物体を2次元画像から切り離すことができる構成的明瞭な暗黙モデルを開発した。
本手法は,3次元手オブジェクトアノテーションに頼らず,組込みと組込みの両面において,完全教師付きベースラインに優れる。
論文 参考訳(メタデータ) (2023-11-30T10:50:35Z) - HMDO: Markerless Multi-view Hand Manipulation Capture with Deformable
Objects [8.711239906965893]
HMDOは、手と変形可能な物体の対話的な動きを記録する最初のマーカーレス変形可能な相互作用データセットである。
提案手法は,手と変形可能な物体の対話的動きを高品質に再現することができる。
論文 参考訳(メタデータ) (2023-01-18T16:55:15Z) - Interacting Hand-Object Pose Estimation via Dense Mutual Attention [97.26400229871888]
3Dハンドオブジェクトのポーズ推定は多くのコンピュータビジョンアプリケーションの成功の鍵となる。
本研究では,手と物体間の微粒な依存関係をモデル化できる新しい相互注意機構を提案する。
提案手法は,高品質かつリアルタイムな推論速度で,物理的に妥当なポーズを生成できる。
論文 参考訳(メタデータ) (2022-11-16T10:01:33Z) - Ego2HandsPose: A Dataset for Egocentric Two-hand 3D Global Pose
Estimation [0.0]
Ego2HandsPoseは、目に見えないドメインでカラーベースの2Dトラッキングを可能にする最初のデータセットである。
本研究では,1)1つの画像を用いた3次元手ポーズアノテーションの実現,2)2次元手ポーズから3次元手ポーズへの自動変換,3)時間的整合性を伴う高精度な両手トラッキングを実現するためのパラメトリックフィッティングアルゴリズムの開発を行う。
論文 参考訳(メタデータ) (2022-06-10T07:50:45Z) - RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB
Video [76.86512780916827]
本稿では,1台のRGBカメラによる骨格ポーズのモーションキャプチャと手の表面形状をリアルタイムに計測する手法を提案する。
RGBデータの本質的な深さの曖昧さに対処するために,我々は新しいマルチタスクCNNを提案する。
RGBの片手追跡と3D再構築パイプラインの個々のコンポーネントを実験的に検証した。
論文 参考訳(メタデータ) (2021-06-22T12:53:56Z) - Joint Hand-object 3D Reconstruction from a Single Image with
Cross-branch Feature Fusion [78.98074380040838]
特徴空間において手とオブジェクトを共同で検討し、2つの枝の相互性について検討する。
入力されたRGB画像に推定深度マップを付加するために補助深度推定モジュールを用いる。
提案手法は,オブジェクトの復元精度において既存手法よりも優れていた。
論文 参考訳(メタデータ) (2020-06-28T09:50:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。