論文の概要: Exact Matching in Correlated Networks with Node Attributes for Improved Community Recovery
- arxiv url: http://arxiv.org/abs/2501.02851v1
- Date: Mon, 06 Jan 2025 08:57:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:06:19.786026
- Title: Exact Matching in Correlated Networks with Node Attributes for Improved Community Recovery
- Title(参考訳): コミュニティリカバリ改善のためのノード属性付きネットワークのエクササイズマッチング
- Authors: Joonhyuk Yang, Hye Won Chung,
- Abstract要約: ノードとエッジが相互に相関する複数のネットワークにおけるコミュニティ検出について検討する。
本稿では,グラフ間の構造的および属性的相関を組み込んだCSBMについて紹介する。
この結果から,グラフマッチングとコミュニティリカバリの相互作用によって,パフォーマンスが向上することを示す。
- 参考スコア(独自算出の注目度): 10.696635172502141
- License:
- Abstract: We study community detection in multiple networks whose nodes and edges are jointly correlated. This setting arises naturally in applications such as social platforms, where a shared set of users may exhibit both correlated friendship patterns and correlated attributes across different platforms. Extending the classical Stochastic Block Model (SBM) and its contextual counterpart (CSBM), we introduce the correlated CSBM, which incorporates structural and attribute correlations across graphs. To build intuition, we first analyze correlated Gaussian Mixture Models, wherein only correlated node attributes are available without edges, and identify the conditions under which an estimator minimizing the distance between attributes achieves exact matching of nodes across the two databases. For correlated CSBMs, we develop a two-step procedure that first applies $k$-core matching to most nodes using edge information, then refines the matching for the remaining unmatched nodes by leveraging their attributes with a distance-based estimator. We identify the conditions under which the algorithm recovers the exact node correspondence, enabling us to merge the correlated edges and average the correlated attributes for enhanced community detection. Crucially, by aligning and combining graphs, we identify regimes in which community detection is impossible in a single graph but becomes feasible when side information from correlated graphs is incorporated. Our results illustrate how the interplay between graph matching and community recovery can boost performance, broadening the scope of multi-graph, attribute-based community detection.
- Abstract(参考訳): ノードとエッジが相互に相関する複数のネットワークにおけるコミュニティ検出について検討する。
この設定は、ソーシャルプラットフォームのようなアプリケーションで自然に発生し、共有されたユーザのセットは、異なるプラットフォーム間で相関する友情パターンと相関する属性の両方を示すことができる。
従来の確率的ブロックモデル(SBM)と文脈的ブロックモデル(CSBM)を拡張し,グラフ間の構造的および属性的相関を組み込んだ相関CSBMを導入する。
直観を構築するために、まず相関したガウス混合モデルを分析し、エッジのないノード属性のみを利用できるようにし、属性間の距離を最小化する推定器が2つのデータベースにまたがるノードの正確なマッチングを実現する条件を特定する。
相関型CSBMでは、まずエッジ情報を用いてほとんどのノードに$k$-coreマッチングを適用し、その後、それらの属性を距離ベース推定器で活用することにより、残りの未マッチングノードのマッチングを洗練する。
アルゴリズムが正確なノード対応を回復する条件を特定し、相関するエッジをマージし、相関する属性を平均化し、コミュニティ検出を強化する。
重要なことは、グラフの整列と結合により、単一のグラフではコミュニティ検出が不可能であるが、相関グラフからの側情報が組み込まれた場合、実現可能となる状況を特定することである。
以上の結果から,グラフマッチングとコミュニティリカバリの相互作用によってパフォーマンスが向上し,マルチグラフ,属性ベースのコミュニティ検出の範囲が拡大することを示す。
関連論文リスト
- BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - Efficient Algorithms for Exact Graph Matching on Correlated Stochastic
Block Models with Constant Correlation [7.914348940034351]
本稿では,グラフとコミュニティ構造をマッチングする効率的なアルゴリズムを提案する。
我々のアルゴリズムは2つの相関ブロックモデル間の正確なマッチングを実現する最初の低次時間アルゴリズムである。
論文 参考訳(メタデータ) (2023-05-31T09:06:50Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
分散ディープラーニングのためのグラフベースパーソナライズアルゴリズム(GATTA)を提案する。
特に、各エージェントのパーソナライズされたモデルは、グローバルな部分とノード固有の部分で構成される。
グラフ内の各エージェントを1つのノードとして扱うことにより、ノード固有のパラメータを特徴として扱うことにより、グラフアテンション機構の利点を継承することができる。
論文 参考訳(メタデータ) (2023-05-22T13:48:30Z) - Community detection in complex networks via node similarity, graph
representation learning, and hierarchical clustering [4.264842058017711]
コミュニティ検出は、実際のグラフを分析する上で重要な課題である。
この記事では,この課題に対処する3つの新しい階層型フレームワークを提案する。
ブロックモデルグラフと実生活データセットにおける100以上のモジュールの組み合わせを比較します。
論文 参考訳(メタデータ) (2023-03-21T22:12:53Z) - PA-GM: Position-Aware Learning of Embedding Networks for Deep Graph
Matching [14.713628231555223]
本稿では,線形代入問題を高次元空間にマッピングできる新しいエンドツーエンドニューラルネットワークを提案する。
我々のモデルは、ノードの相対的な位置に対するアンカーセットを構成する。
そして、相対位置の尺度に基づいて、ターゲットノードと各アンカーノードの特徴情報を集約する。
論文 参考訳(メタデータ) (2023-01-05T06:54:21Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Detecting Communities from Heterogeneous Graphs: A Context Path-based
Graph Neural Network Model [23.525079144108567]
コンテキストパスに基づくグラフニューラルネットワーク(CP-GNN)モデルを構築した。
ノード間の高次関係をノードの埋め込みに埋め込む。
最先端のコミュニティ検出手法よりも優れています。
論文 参考訳(メタデータ) (2021-09-05T12:28:00Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - A Universal Model for Cross Modality Mapping by Relational Reasoning [29.081989993636338]
クロスモダリティマッピングは、コンピュータビジョンコミュニティで注目を集めています。
本稿では,相互関係を効率的に計算するGCNベースのReasoning Network(RR-Net)を提案する。
画像分類,ソーシャルレコメンデーション,および音声認識の3つの例による実験により,提案モデルの優越性と普遍性を明らかにした。
論文 参考訳(メタデータ) (2021-02-26T08:56:24Z) - Jointly Cross- and Self-Modal Graph Attention Network for Query-Based
Moment Localization [77.21951145754065]
本稿では,共同グラフを渡る反復的メッセージのプロセスとして,このタスクをリキャストするクロスモーダルグラフ注意ネットワーク(CSMGAN)を提案する。
CSMGANは2つのモード間の高次相互作用を効果的に捉えることができ、より正確な局所化を可能にします。
論文 参考訳(メタデータ) (2020-08-04T08:25:24Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
本稿では,知識グラフ補完のためのリレーショナルメッセージパッシング手法を提案する。
エッジ間でリレーショナルメッセージを反復的に送信し、近隣情報を集約する。
その結果,本手法は最先端の知識完成手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-17T03:33:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。