Exact Matching in Correlated Networks with Node Attributes for Improved Community Recovery
- URL: http://arxiv.org/abs/2501.02851v1
- Date: Mon, 06 Jan 2025 08:57:44 GMT
- Title: Exact Matching in Correlated Networks with Node Attributes for Improved Community Recovery
- Authors: Joonhyuk Yang, Hye Won Chung,
- Abstract summary: We study community detection in multiple networks whose nodes and edges are jointly correlated.
We introduce the correlated CSBM, which incorporates structural and attribute correlations across graphs.
Our results illustrate how the interplay between graph matching and community recovery can boost performance.
- Score: 10.696635172502141
- License:
- Abstract: We study community detection in multiple networks whose nodes and edges are jointly correlated. This setting arises naturally in applications such as social platforms, where a shared set of users may exhibit both correlated friendship patterns and correlated attributes across different platforms. Extending the classical Stochastic Block Model (SBM) and its contextual counterpart (CSBM), we introduce the correlated CSBM, which incorporates structural and attribute correlations across graphs. To build intuition, we first analyze correlated Gaussian Mixture Models, wherein only correlated node attributes are available without edges, and identify the conditions under which an estimator minimizing the distance between attributes achieves exact matching of nodes across the two databases. For correlated CSBMs, we develop a two-step procedure that first applies $k$-core matching to most nodes using edge information, then refines the matching for the remaining unmatched nodes by leveraging their attributes with a distance-based estimator. We identify the conditions under which the algorithm recovers the exact node correspondence, enabling us to merge the correlated edges and average the correlated attributes for enhanced community detection. Crucially, by aligning and combining graphs, we identify regimes in which community detection is impossible in a single graph but becomes feasible when side information from correlated graphs is incorporated. Our results illustrate how the interplay between graph matching and community recovery can boost performance, broadening the scope of multi-graph, attribute-based community detection.
Related papers
- BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Efficient Algorithms for Exact Graph Matching on Correlated Stochastic
Block Models with Constant Correlation [7.914348940034351]
We propose an efficient algorithm for matching graphs with community structure.
Our algorithm is the first low-order-time algorithm achieving exact matching between two correlated block models.
arXiv Detail & Related papers (2023-05-31T09:06:50Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
We propose a graph-based personalized algorithm (GATTA) for distributed deep learning.
In particular, the personalized model in each agent is composed of a global part and a node-specific part.
By treating each agent as one node in a graph the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited.
arXiv Detail & Related papers (2023-05-22T13:48:30Z) - Community detection in complex networks via node similarity, graph
representation learning, and hierarchical clustering [4.264842058017711]
Community detection is a critical challenge in analysing real graphs.
This article proposes three new, general, hierarchical frameworks to deal with this task.
We compare over a hundred module combinations on the Block Model graphs and real-life datasets.
arXiv Detail & Related papers (2023-03-21T22:12:53Z) - PA-GM: Position-Aware Learning of Embedding Networks for Deep Graph
Matching [14.713628231555223]
We introduce a novel end-to-end neural network that can map the linear assignment problem into a high-dimensional space.
Our model constructs the anchor set for the relative position of nodes.
It then aggregates the feature information of the target node and each anchor node based on a measure of relative position.
arXiv Detail & Related papers (2023-01-05T06:54:21Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Detecting Communities from Heterogeneous Graphs: A Context Path-based
Graph Neural Network Model [23.525079144108567]
We build a Context Path-based Graph Neural Network (CP-GNN) model.
It embeds the high-order relationship between nodes into the node embedding.
It outperforms the state-of-the-art community detection methods.
arXiv Detail & Related papers (2021-09-05T12:28:00Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - A Universal Model for Cross Modality Mapping by Relational Reasoning [29.081989993636338]
Cross modality mapping has attracted growing attention in the computer vision community.
We propose a GCN-based Reasoning Network (RR-Net) in which inter and intra relations are efficiently computed.
Experiments on three example tasks, i.e., image classification, social recommendation and sound recognition, clearly demonstrate the superiority and universality of our proposed model.
arXiv Detail & Related papers (2021-02-26T08:56:24Z) - Jointly Cross- and Self-Modal Graph Attention Network for Query-Based
Moment Localization [77.21951145754065]
We propose a novel Cross- and Self-Modal Graph Attention Network (CSMGAN) that recasts this task as a process of iterative messages passing over a joint graph.
Our CSMGAN is able to effectively capture high-order interactions between two modalities, thus enabling a further precise localization.
arXiv Detail & Related papers (2020-08-04T08:25:24Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
We propose a relational message passing method for knowledge graph completion.
It passes relational messages among edges iteratively to aggregate neighborhood information.
Results show our method outperforms stateof-the-art knowledge completion methods by a large margin.
arXiv Detail & Related papers (2020-02-17T03:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.