Detecting Communities from Heterogeneous Graphs: A Context Path-based
Graph Neural Network Model
- URL: http://arxiv.org/abs/2109.02058v1
- Date: Sun, 5 Sep 2021 12:28:00 GMT
- Title: Detecting Communities from Heterogeneous Graphs: A Context Path-based
Graph Neural Network Model
- Authors: Linhao Luo, Yixiang Fang, Xin Cao, Xiaofeng Zhang, Wenjie Zhang
- Abstract summary: We build a Context Path-based Graph Neural Network (CP-GNN) model.
It embeds the high-order relationship between nodes into the node embedding.
It outperforms the state-of-the-art community detection methods.
- Score: 23.525079144108567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Community detection, aiming to group the graph nodes into clusters with dense
inner-connection, is a fundamental graph mining task. Recently, it has been
studied on the heterogeneous graph, which contains multiple types of nodes and
edges, posing great challenges for modeling the high-order relationship between
nodes. With the surge of graph embedding mechanism, it has also been adopted to
community detection. A remarkable group of works use the meta-path to capture
the high-order relationship between nodes and embed them into nodes' embedding
to facilitate community detection. However, defining meaningful meta-paths
requires much domain knowledge, which largely limits their applications,
especially on schema-rich heterogeneous graphs like knowledge graphs. To
alleviate this issue, in this paper, we propose to exploit the context path to
capture the high-order relationship between nodes, and build a Context
Path-based Graph Neural Network (CP-GNN) model. It recursively embeds the
high-order relationship between nodes into the node embedding with attention
mechanisms to discriminate the importance of different relationships. By
maximizing the expectation of the co-occurrence of nodes connected by context
paths, the model can learn the nodes' embeddings that both well preserve the
high-order relationship between nodes and are helpful for community detection.
Extensive experimental results on four real-world datasets show that CP-GNN
outperforms the state-of-the-art community detection methods.
Related papers
- Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRARE is a framework built upon node relative entropy and deep reinforcement learning.
An innovative node relative entropy is used to measure mutual information between node pairs.
A deep reinforcement learning-based algorithm is developed to optimize the graph topology.
arXiv Detail & Related papers (2023-12-15T11:30:18Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
We study hierarchical message passing models that leverage a multi-resolution representation of a given graph.
This facilitates learning of features that span large receptive fields without loss of local information.
We introduce Hierarchical Graph Net (HGNet), which for any two connected nodes guarantees existence of message-passing paths of at most logarithmic length.
arXiv Detail & Related papers (2021-07-15T16:24:22Z) - On Local Aggregation in Heterophilic Graphs [11.100606980915144]
We show that properly tuned classical GNNs and multi-layer perceptrons match or exceed the accuracy of recent long-range aggregation methods on heterophilic graphs.
We propose the Neighborhood Information Content(NIC) metric, which is a novel information-theoretic graph metric.
arXiv Detail & Related papers (2021-06-06T19:12:31Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
We propose a higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning.
HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics.
It shows superior performance against the state-of-the-art methods in node classification, node clustering, and visualization.
arXiv Detail & Related papers (2021-04-16T04:56:38Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Integrating Network Embedding and Community Outlier Detection via
Multiclass Graph Description [15.679313861083239]
We propose a novel unsupervised graph embedding approach (called DMGD) which integrates outlier and community detection with node embedding.
We show the theoretical bounds on the number of outliers detected by DMGD.
Our formulation boils down to an interesting minimax game between the outliers, community assignments and the node embedding function.
arXiv Detail & Related papers (2020-07-20T16:21:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.