論文の概要: METFORD -- Mutation tEsTing Framework fOR anDroid
- arxiv url: http://arxiv.org/abs/2501.02875v2
- Date: Sun, 12 Jan 2025 19:20:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:27:40.908242
- Title: METFORD -- Mutation tEsTing Framework fOR anDroid
- Title(参考訳): METFORD -- Mutation tEsTing Framework fOR anDroid
- Authors: Auri M. R. Vincenzi, Pedro H. Kuroishi, João C. M. Bispo, Ana R. C. da Veiga, David R. C. da Mata, Francisco B. Azevedo, Ana C. R. Paiva,
- Abstract要約: この研究は、Androidの突然変異検査コストの削減に寄与することを目的としている。
突然変異テスト演算子を変異スキーマに従って実装する。
追加の突然変異演算子はJavaScriptで実装でき、フレームワークに簡単に統合できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Mutation testing may be used to guide test case generation and as a technique to assess the quality of test suites. Despite being used frequently, mutation testing is not so commonly applied in the mobile world. One critical challenge in mutation testing is dealing with its computational cost. Generating mutants, running test cases over each mutant, and analyzing the results may require significant time and resources. This research aims to contribute to reducing Android mutation testing costs. It implements mutation testing operators (traditional and Android-specific) according to mutant schemata (implementing multiple mutants into a single code file). It also describes an Android mutation testing framework developed to execute test cases and determine mutation scores. Additional mutation operators can be implemented in JavaScript and easily integrated into the framework. The overall approach is validated through case studies showing that mutant schemata have advantages over the traditional mutation strategy (one file per mutant). The results show mutant schemata overcome traditional mutation in all evaluated aspects with no additional cost: it takes 8.50% less time for mutant generation, requires 99.78% less disk space, and runs, on average, 6.45% faster than traditional mutation. Moreover, considering sustainability metrics, mutant schemata have 8,18% less carbon footprint than traditional strategy.
- Abstract(参考訳): 変異テストは、テストケースの生成をガイドしたり、テストスイートの品質を評価するテクニックとして使用することができる。
頻繁に使用されるにもかかわらず、突然変異検査はモバイルの世界では一般的ではない。
突然変異テストにおける重要な課題の1つは、その計算コストを扱うことである。
ミュータントの生成、各ミュータント上でのテストケースの実行、結果の分析にはかなりの時間とリソースが必要になる。
この研究は、Androidの突然変異検査コストの削減に寄与することを目的としている。
ミュータントスキーマ(複数のミュータントを1つのコードファイルに実装)に従って、突然変異テスト演算子(伝統的およびAndroid固有の)を実装する。
また、テストケースを実行し、突然変異スコアを決定するために開発されたAndroidの突然変異テストフレームワークについても説明している。
追加の突然変異演算子はJavaScriptで実装でき、フレームワークに簡単に統合できる。
全体的なアプローチは、突然変異スキーマが従来の突然変異戦略(ミュータント毎のファイル1つ)よりも有利であることを示すケーススタディを通じて検証されている。
その結果、変異スキーマは、全ての評価された側面において、追加のコストなしで従来の突然変異を克服し、突然変異生成に8.50%の時間を要し、ディスクスペースを99.78%削減し、平均6.45%の速度で実行可能である。
さらに、持続可能性指標を考慮すると、変異スキーマは従来の戦略よりも8,18%少ない炭素フットプリントを持つ。
関連論文リスト
- Leveraging Propagated Infection to Crossfire Mutants [4.229296050697151]
テストが不十分な場合、各ミュータントはテストスイートを改善する機会を提供する。
多くの生き残った変異体は、単に追加のアサーションで既存のテストを増強することで検出できる。
我々は、複数の変異体を偶然に殺傷するクロスファイリングの機会を特定する以前の研究に基づいています。
論文 参考訳(メタデータ) (2024-11-14T23:31:26Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Learning to Predict Mutation Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning [78.38442423223832]
我々は、新しいコードブック事前学習タスク、すなわちマスク付きマイクロ環境モデリングを開発する。
突然変異効果予測において、最先端の事前学習法よりも優れた性能と訓練効率を示す。
論文 参考訳(メタデータ) (2024-05-16T03:53:21Z) - An Empirical Evaluation of Manually Created Equivalent Mutants [54.02049952279685]
手動で作成した突然変異体の10%未満は等価である。
驚くべきことに、我々の発見は、開発者の大部分が同等のミュータントを正確に識別するのに苦労していることを示している。
論文 参考訳(メタデータ) (2024-04-14T13:04:10Z) - Contextual Predictive Mutation Testing [17.832774161583036]
MutationBERTは、ソースメソッドの突然変異とテストメソッドを同時にエンコードする予測突然変異テストのアプローチである。
精度が高いため、MutationBERTは、ライブミュータントをチェック・検証する以前のアプローチで費やされた時間の33%を節約する。
我々は、入力表現と、テストマトリックスレベルからテストスイートレベルまで予測を引き上げるためのアグリゲーションアプローチを検証し、同様の性能改善を見出した。
論文 参考訳(メタデータ) (2023-09-05T17:00:15Z) - MuRS: Mutant Ranking and Suppression using Identifier Templates [4.9205581820379765]
Googleの突然変異テストサービスは、差分ベースの突然変異テストをコードレビュープロセスに統合する。
Googleの突然変異テストサービスは、役に立たないミュータントをターゲットにした、いくつかの抑制ルールを実装している。
テスト中のソースコードのパターンによってミュータントをグループ化する自動手法である MuRS を提案し,評価する。
論文 参考訳(メタデータ) (2023-06-15T13:43:52Z) - DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of
GPT-Generated Text [82.5469544192645]
ダイバージェントN-Gram解析(DNA-GPT)と呼ばれる新しいトレーニング不要検出手法を提案する。
元の部分と新しい部分の違いをN-gram解析により解析することにより,機械生成テキストと人文テキストの分布に顕著な相違が明らかになった。
その結果, ゼロショットアプローチは, 人文とGPT生成テキストの区別において, 最先端の性能を示すことがわかった。
論文 参考訳(メタデータ) (2023-05-27T03:58:29Z) - Systematic Assessment of Fuzzers using Mutation Analysis [20.91546707828316]
ソフトウェアテストでは、テスト品質を評価するためのゴールドスタンダードは突然変異解析である。
突然変異解析は、様々なカバレッジ対策を仮定し、大規模で多様な障害セットを提供する。
複数の突然変異をプールし、初めて(初めて)ファジィを突然変異解析と比較する現代の突然変異解析技術を適用します。
論文 参考訳(メタデータ) (2022-12-06T15:47:47Z) - Sequential Permutation Testing of Random Forest Variable Importance
Measures [68.8204255655161]
そこで本研究では、逐次置換テストと逐次p値推定を用いて、従来の置換テストに関連する高い計算コストを削減することを提案する。
シミュレーション研究の結果、シーケンシャルテストの理論的性質が当てはまることを確認した。
本手法の数値安定性を2つの応用研究で検討した。
論文 参考訳(メタデータ) (2022-06-02T20:16:50Z) - Effective Mutation Rate Adaptation through Group Elite Selection [50.88204196504888]
本稿では,GESMR(Group Elite Selection of Mutation Rates)アルゴリズムを提案する。
GESMRは解の集団とMRの集団を共進化させ、各MRは解群に割り当てられる。
同じ数の関数評価とオーバーヘッドのほとんどないGESMRは、以前のアプローチよりも早く、より良いソリューションに収束する。
論文 参考訳(メタデータ) (2022-04-11T01:08:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。