From Tables to Time: How TabPFN-v2 Outperforms Specialized Time Series Forecasting Models
- URL: http://arxiv.org/abs/2501.02945v3
- Date: Mon, 26 May 2025 15:25:31 GMT
- Title: From Tables to Time: How TabPFN-v2 Outperforms Specialized Time Series Forecasting Models
- Authors: Shi Bin Hoo, Samuel Müller, David Salinas, Frank Hutter,
- Abstract summary: We introduce TabPFN-TS, a simple method that combines TabPFN-v2 with lightweight feature engineering to enable both point and probabilistic forecasting.<n>Despite its simplicity and compact size (11M parameters), TabPFN-TS achieves top rank on the public GIFT-Eval leaderboard in both forecasting tasks.
- Score: 40.19199376033612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models have become increasingly popular for forecasting due to their ability to provide predictions without requiring a lot of training data. In this work, we demonstrate how TabPFN-v2, a general tabular foundation model, can be effectively applied to time series forecasting. We introduce TabPFN-TS, a simple method that combines TabPFN-v2 with lightweight feature engineering to enable both point and probabilistic forecasting. Despite its simplicity and compact size (11M parameters), TabPFN-TS achieves top rank on the public GIFT-Eval leaderboard in both forecasting tasks. Through ablation studies, we investigate factors contributing to this surprising effectiveness, especially considering TabPFN-v2 was pretrained solely on synthetic tabular data with no exposure to time series. Our results highlights the potential of tabular foundation models like TabPFN-v2 as a valuable new approach for time series forecasting. Our implementation is available at https://github.com/PriorLabs/tabpfn-time-series.
Related papers
- TabPFN: One Model to Rule Them All? [21.658323618943697]
We provide a tailored explanation of how TabPFN works for a statistics audience.<n>We show that an out-of-the-box application of TabPFN vastly outperforms specialized state-of-the-art methods.
arXiv Detail & Related papers (2025-05-26T13:55:29Z) - A Closer Look at TabPFN v2: Understanding Its Strengths and Extending Its Capabilities [51.08999772842298]
Tabular Prior-data Fitted Network v2 (TabPFN v2) achieves unprecedented in-context learning performance across diverse downstream datasets.<n>We show that TabPFN v2 can infer attribute relationships even when provided with randomized attribute token inputs.<n>We demonstrate that TabPFN v2's limitations can be addressed through a test-time divide-and-context strategy.
arXiv Detail & Related papers (2025-02-24T17:38:42Z) - Benchmarking Time Series Forecasting Models: From Statistical Techniques to Foundation Models in Real-World Applications [0.0]
Time series forecasting is essential for operational intelligence in the hospitality industry.
This study evaluates the performance of statistical, machine learning (ML), deep learning, and foundation models in forecasting hourly sales over a 14-day horizon.
arXiv Detail & Related papers (2025-02-05T17:30:31Z) - Sundial: A Family of Highly Capable Time Series Foundation Models [64.6322079384575]
We introduce Sundial, a family of native, flexible, and scalable time series foundation models.
Our model is pre-trained without specifying any prior distribution and can generate multiple probable predictions.
By mitigating mode collapse through TimeFlow Loss, we pre-train a family of Sundial models on TimeBench, which exhibit unprecedented model capacity and generalization performance.
arXiv Detail & Related papers (2025-02-02T14:52:50Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Tokenize features, enhancing tables: the FT-TABPFN model for tabular classification [13.481699494376809]
FT-TabPFN is an enhanced version of TabPFN that includes a novel Feature Tokenization layer to better handle classification features.
Our full source code is available for community use and development.
arXiv Detail & Related papers (2024-06-11T02:13:46Z) - SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters [16.966008476215258]
This paper introduces SparseTSF, a novel, extremely lightweight model for Long-term Time Series Forecasting (LTSF)
At the heart of SparseTSF lies the Cross-Period Sparse Forecasting technique, which simplifies the forecasting task by decoupling the periodicity and trend in time series data.
SparseTSF showcases remarkable generalization capabilities, making it well-suited for scenarios with limited computational resources, small samples, or low-quality data.
arXiv Detail & Related papers (2024-05-02T02:15:23Z) - Interpretable Machine Learning for TabPFN [5.012821694203072]
The TabPFN model is able to achieve state-of-the-art performance on a variety of classification tasks.
By taking advantage of the unique properties of the model, our adaptations allow for more efficient computations.
arXiv Detail & Related papers (2024-03-16T13:35:15Z) - Chronos: Learning the Language of Time Series [79.38691251254173]
Chronos is a framework for pretrained probabilistic time series models.
We show that Chronos models can leverage time series data from diverse domains to improve zero-shot accuracy on unseen forecasting tasks.
arXiv Detail & Related papers (2024-03-12T16:53:54Z) - A Scalable and Transferable Time Series Prediction Framework for Demand
Forecasting [24.06534393565697]
Time series forecasting is one of the most essential and ubiquitous tasks in many business problems.
We propose Forecasting orchestra (Forchestra), a simple but powerful framework capable of accurately predicting future demand for a diverse range of items.
arXiv Detail & Related papers (2024-02-29T18:01:07Z) - TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks [90.00817095558094]
Prior-data fitted networks (PFNs) make use of pretraining and in-context learning to achieve strong performance on new tasks in a single forward pass.
We introduce TuneTables, a parameter-efficient fine-tuning strategy for PFNs that compresses large datasets into a smaller learned context.
We show that TuneTables can be used as an interpretability tool and can even be used to mitigate biases by optimizing a fairness objective.
arXiv Detail & Related papers (2024-02-17T00:02:23Z) - Scaling TabPFN: Sketching and Feature Selection for Tabular Prior-Data
Fitted Networks [31.82225213006849]
Tabular classification has traditionally relied on supervised algorithms, which estimate the parameters of a prediction model using its training data.
Recently, Prior-Data Fitted Networks (PFNs) such as TabPFN have successfully learned to classify tabular data in-context.
While such models show great promise, their applicability to real-world data remains limited due to the computational scale needed.
arXiv Detail & Related papers (2023-11-17T16:04:27Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Generative Table Pre-training Empowers Models for Tabular Prediction [71.76829961276032]
We propose TapTap, the first attempt that leverages table pre-training to empower models for tabular prediction.
TapTap can generate high-quality synthetic tables to support various applications, including privacy protection, low resource regime, missing value imputation, and imbalanced classification.
It can be easily combined with various backbone models, including LightGBM, Multilayer Perceptron (MLP) and Transformer.
arXiv Detail & Related papers (2023-05-16T06:37:38Z) - TabPFN: A Transformer That Solves Small Tabular Classification Problems
in a Second [48.87527918630822]
We present TabPFN, a trained Transformer that can do supervised classification for small datasets in less than a second.
TabPFN performs in-context learning (ICL), it learns to make predictions using sequences of labeled examples.
We show that our method clearly outperforms boosted trees and performs on par with complex state-of-the-art AutoML systems with up to 230$times$ speedup.
arXiv Detail & Related papers (2022-07-05T07:17:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.