A Bio-Inspired Research Paradigm of Collision Perception Neurons Enabling Neuro-Robotic Integration: The LGMD Case
- URL: http://arxiv.org/abs/2501.02982v1
- Date: Mon, 06 Jan 2025 12:44:48 GMT
- Title: A Bio-Inspired Research Paradigm of Collision Perception Neurons Enabling Neuro-Robotic Integration: The LGMD Case
- Authors: Ziyan Qin, Jigen Peng, Shigang Yue, Qinbing Fu,
- Abstract summary: Insect visual systems excel at rapid and precise collision detection, despite relying on only tens of thousands of neurons.
Researchers have identified collision-selective neurons in the locust's optic lobe, called lobula giant movement detectors (LGMDs)
With a deeper understanding of LGMD neurons, LGMD-based models have significantly improved collision-free navigation in mobile robots.
- Score: 7.885957968654851
- License:
- Abstract: Compared to human vision, insect visual systems excel at rapid and precise collision detection, despite relying on only tens of thousands of neurons organized through a few neuropils. This efficiency makes them an attractive model system for developing artificial collision-detecting systems. Specifically, researchers have identified collision-selective neurons in the locust's optic lobe, called lobula giant movement detectors (LGMDs), which respond specifically to approaching objects. Research upon LGMD neurons began in the early 1970s. Initially, due to their large size, these neurons were identified as motion detectors, but their role as looming detectors was recognized over time. Since then, progress in neuroscience, computational modeling of LGMD's visual neural circuits, and LGMD-based robotics has advanced in tandem, each field supporting and driving the others. Today, with a deeper understanding of LGMD neurons, LGMD-based models have significantly improved collision-free navigation in mobile robots including ground and aerial robots. This review highlights recent developments in LGMD research from the perspectives of neuroscience, computational modeling, and robotics. It emphasizes a biologically plausible research paradigm, where insights from neuroscience inform real-world applications, which would in turn validate and advance neuroscience. With strong support from extensive research and growing application demand, this paradigm has reached a mature stage and demonstrates versatility across different areas of neuroscience research, thereby enhancing our understanding of the interconnections between neuroscience, computational modeling, and robotics. Furthermore, other motion-sensitive neurons have also shown promising potential for adopting this research paradigm.
Related papers
- Single-neuron deep generative model uncovers underlying physics of neuronal activity in Ca imaging data [0.0]
We propose a novel framework for single-neuron representation learning using autoregressive variational autoencoders (AVAEs)
Our approach embeds individual neurons' signals into a reduced-dimensional space without the need for spike inference algorithms.
The AVAE excels over traditional linear methods by generating more informative and discriminative latent representations.
arXiv Detail & Related papers (2025-01-24T16:33:52Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Orangutan: A Multiscale Brain Emulation-Based Artificial Intelligence Framework for Dynamic Environments [2.8137865669570297]
This paper introduces a novel brain-inspired AI framework, Orangutan.
It simulates the structure and computational mechanisms of biological brains on multiple scales.
I have developed a sensorimotor model that simulates human saccadic eye movements during object observation.
arXiv Detail & Related papers (2024-06-18T01:41:57Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
We propose an interpretable framework to analyze disorder-specific Regions of Interest (ROIs) and prominent connections.
The proposed framework consists of two modules: a brain-network-oriented backbone model for disease prediction and a globally shared explanation generator.
arXiv Detail & Related papers (2022-06-30T08:02:05Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
We argue that computational models are key tools for elucidating possible functionalities that emerge from network interactions.
Here we review several classes of models including spiking neurons, integrate and fire neurons.
We hope these studies will inform future developments in artificial intelligence algorithms as well as help validate our understanding of brain processes.
arXiv Detail & Related papers (2022-03-29T10:28:01Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.