論文の概要: GLFC: Unified Global-Local Feature and Contrast Learning with Mamba-Enhanced UNet for Synthetic CT Generation from CBCT
- arxiv url: http://arxiv.org/abs/2501.02992v1
- Date: Mon, 06 Jan 2025 13:11:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:08.014316
- Title: GLFC: Unified Global-Local Feature and Contrast Learning with Mamba-Enhanced UNet for Synthetic CT Generation from CBCT
- Title(参考訳): GLFC:CBCTからの合成CT生成のためのマンバ強化UNetによるグローバルローカル特徴とコントラスト学習
- Authors: Xianhao Zhou, Jianghao Wu, Huangxuan Zhao, Lei Chen, Shaoting Zhang, Guotai Wang, Guotai Wang,
- Abstract要約: sCT生成のためのグローバルローカル特徴・コントラスト学習フレームワークを提案する。
Mamba-Enhanced UNet (MEUNet) は、Mambaブロックを高解像度UNetのスキップ接続に統合することで実現されている。
SynthRAD2023データセットの実験では、GLFCはオリジナルのCBCTと比較してsCTのSSIMを77.91%から91.50%改善した。
- 参考スコア(独自算出の注目度): 18.492569536151546
- License:
- Abstract: Generating synthetic Computed Tomography (CT) images from Cone Beam Computed Tomography (CBCT) is desirable for improving the image quality of CBCT. Existing synthetic CT (sCT) generation methods using Convolutional Neural Networks (CNN) and Transformers often face difficulties in effectively capturing both global and local features and contrasts for high-quality sCT generation. In this work, we propose a Global-Local Feature and Contrast learning (GLFC) framework for sCT generation. First, a Mamba-Enhanced UNet (MEUNet) is introduced by integrating Mamba blocks into the skip connections of a high-resolution UNet for effective global and local feature learning. Second, we propose a Multiple Contrast Loss (MCL) that calculates synthetic loss at different intensity windows to improve quality for both soft tissues and bone regions. Experiments on the SynthRAD2023 dataset demonstrate that GLFC improved the SSIM of sCT from 77.91% to 91.50% compared with the original CBCT, and significantly outperformed several existing methods for sCT generation. The code is available at https://github.com/intelland/GLFC
- Abstract(参考訳): Cone Beam Computed Tomography (CBCT) から合成CT画像を生成することが, CBCTの画質向上に有用である。
畳み込みニューラルネットワーク(CNN)とトランスフォーマーを用いた既存の合成CT(sCT)生成法は、大域的・局所的な特徴と高品質なsCT生成のコントラストを効果的に捉えるのに困難に直面することが多い。
本研究では,sCT生成のためのGlobal-Local Feature and Contrast Learning(GLFC)フレームワークを提案する。
まず,Mambaブロックを高解像度UNetのスキップ接続に統合して,グローバルかつローカルな特徴学習を実現することで,MEUNet(Mamba-Enhanced UNet)を導入する。
第2に,軟部組織および骨領域の質を向上させるために,異なる強度窓における合成損失を算出するマルチコントラスト損失(MCL)を提案する。
SynthRAD2023データセットの実験では、GLFCはオリジナルのCBCTと比較して、sCTのSSIMを77.91%から91.50%に改善し、既存のsCT生成法を著しく上回った。
コードはhttps://github.com/intelland/GLFCで公開されている。
関連論文リスト
- SinoSynth: A Physics-based Domain Randomization Approach for Generalizable CBCT Image Enhancement [19.059201978992064]
Cone Beam Computed Tomography (CBCT) は医学に様々な応用がある。
CBCT画像のノイズやアーティファクトへの感受性は、その有用性と信頼性の両方を損なう。
Sino Synthは、様々なCBCT固有のアーティファクトをシミュレートし、多様なCBCT画像を生成する物理に基づく分解モデルである。
論文 参考訳(メタデータ) (2024-09-27T00:22:02Z) - Improved 3D Whole Heart Geometry from Sparse CMR Slices [3.701571763780745]
心臓磁気共鳴法(CMR)とCT法(CT)は、心臓血管疾患の患者を診断するための2つの一般的な非侵襲的画像診断法である。
CMRは通常、複数のスパース2Dスライスを取得し、スライス間には避けられない呼吸運動アーチファクトを持ち、CTは等方性密度データを取得するが、電離放射線を使用する。
スライスシフトアルゴリズム(SSA)、空間変換器ネットワーク(STN)、ラベル変換器ネットワーク(LTN)の組み合わせを検討する。
論文 参考訳(メタデータ) (2024-08-14T13:03:48Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - A multi-channel cycleGAN for CBCT to CT synthesis [0.0]
画像合成は、on-treatment cone-beam CT(CBCTs)から合成CTを生成するために使用される
本研究はCBCT-to-sCT合成という2つ目の課題に焦点をあてる。
画像の特徴を強調するためにマルチチャネル入力を活用することで,CBCT画像に固有の課題を効果的に解決する。
論文 参考訳(メタデータ) (2023-12-04T16:40:53Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
クロスモダリティ磁気共鳴(MR)画像合成は、与えられたモダリティから欠落するモダリティを生成するために用いられる。
既存の(教師付き学習)手法は、効果的な合成モデルを訓練するために、多くのペア化されたマルチモーダルデータを必要とすることが多い。
マルチスケールトランスフォーマーネットワーク(MT-Net)を提案する。
論文 参考訳(メタデータ) (2022-12-02T11:40:40Z) - Multi-layer Clustering-based Residual Sparsifying Transform for Low-dose
CT Image Reconstruction [11.011268090482575]
本稿では,X線CT(Computerd Tomography)再構成のためのネットワーク構造スペーシング変換学習手法を提案する。
我々は, PWLS (Palalized weighted least squares) 再構成において, MCSTモデルを正規化器に配置することにより低用量CT再構成にMCSTモデルを適用した。
シミュレーションの結果,PWLS-MCSTは従来のFBP法やEP正則化を用いたPWLSよりも画像再構成精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-03-22T09:38:41Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - Multi-Cycle-Consistent Adversarial Networks for Edge Denoising of
Computed Tomography Images [18.33958264827512]
低線量低線量CT画像(ドメインY)からの高線量CT画像(ドメインX)のような高線量化の試み
本論文では、中間領域を構築し、CT画像のエッジデノイジングのためのローカルおよびグローバルサイクル一貫性の両方を強制するマルチサイクル一貫性対人ネットワーク(MCCAN)を提案する。
論文 参考訳(メタデータ) (2021-04-25T01:53:46Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。