論文の概要: Quality Estimation based Feedback Training for Improving Pronoun Translation
- arxiv url: http://arxiv.org/abs/2501.03008v1
- Date: Mon, 06 Jan 2025 13:34:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:09:19.132395
- Title: Quality Estimation based Feedback Training for Improving Pronoun Translation
- Title(参考訳): 品質評価に基づく韻律翻訳改善のためのフィードバックトレーニング
- Authors: Harshit Dhankhar, Baban Gain, Asif Ekbal, Yogesh Mani Tripathi,
- Abstract要約: 名詞翻訳は神経機械翻訳(NMT)における長年の課題である
本稿では,文脈認識型NMTシステムにおける代名詞と全体的な翻訳品質の向上を目的とした新しいフレームワークであるProNMTを紹介する。
- 参考スコア(独自算出の注目度): 18.7094045593687
- License:
- Abstract: Pronoun translation is a longstanding challenge in neural machine translation (NMT), often requiring inter-sentential context to ensure linguistic accuracy. To address this, we introduce ProNMT, a novel framework designed to enhance pronoun and overall translation quality in context-aware machine translation systems. ProNMT leverages Quality Estimation (QE) models and a unique Pronoun Generation Likelihood-Based Feedback mechanism to iteratively fine-tune pre-trained NMT models without relying on extensive human annotations. The framework combines QE scores with pronoun-specific rewards to guide training, ensuring improved handling of linguistic nuances. Extensive experiments demonstrate significant gains in pronoun translation accuracy and general translation quality across multiple metrics. ProNMT offers an efficient, scalable, and context-aware approach to improving NMT systems, particularly in translating context-dependent elements like pronouns.
- Abstract(参考訳): 代名詞翻訳は神経機械翻訳(NMT)における長年にわたる課題であり、言語的正確性を保証するために文間文脈を必要とすることが多い。
そこで本稿では,文脈対応機械翻訳システムにおける代名詞と全体的な翻訳品質の向上を目的とした新しいフレームワークであるProNMTを紹介する。
ProNMTは品質推定(QE)モデルと独自のPronoun Generation Likelihood-Based Feedbackメカニズムを利用して、広範囲な人間のアノテーションに頼ることなく、反復的に微調整されたNMTモデルを生成する。
このフレームワークは、QEスコアと代名詞固有の報酬を組み合わせてトレーニングをガイドし、言語的ニュアンスの扱いを改善する。
広範囲な実験により、複数の指標にわたる代名詞翻訳精度と一般的な翻訳品質が著しく向上した。
ProNMTは、特に代名詞のような文脈依存要素の翻訳において、NMTシステムを改善するための効率的でスケーラブルでコンテキスト対応のアプローチを提供する。
関連論文リスト
- Efficient Technical Term Translation: A Knowledge Distillation Approach for Parenthetical Terminology Translation [0.0]
本稿では,専門分野におけるコミュニケーションの明確化に不可欠である専門用語を正確に翻訳することの課題に対処する。
本研究は, ペアレンテティカル・ターミノロジー・トランスフォーメーション (PTT) タスクを導入し, ペアレンテティカル・ターミノロジー・トランスフォーメーション(PTT)タスクの翻訳とともに, ペアレンテティカル・ターミノロジー・トランスフォーメーション(Parenthetical Terminology Translation, PTT)タスクを導入した。
そこで我々は,単語の全体的な翻訳精度と正しい括弧表現の両方を評価するための新しい評価指標を開発した。
論文 参考訳(メタデータ) (2024-10-01T13:40:28Z) - Improving Neural Machine Translation by Multi-Knowledge Integration with
Prompting [36.24578487904221]
我々は,マルチ知識,複数種類の知識をNMTモデルに統合し,プロンプトによる性能向上に着目する。
文,用語/フレーズ,翻訳テンプレートなど,複数の種類の知識をNMTモデルに効果的に統合する統合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-08T02:55:00Z) - Code-Switching with Word Senses for Pretraining in Neural Machine
Translation [107.23743153715799]
ニューラルネットワーク翻訳のための単語センス事前学習(WSP-NMT)について紹介する。
WSP-NMTは、知識ベースからの単語感覚情報を活用した多言語NMTモデルの事前学習のためのエンドツーエンドアプローチである。
実験の結果,全体の翻訳品質が大幅に向上した。
論文 参考訳(メタデータ) (2023-10-21T16:13:01Z) - Competency-Aware Neural Machine Translation: Can Machine Translation
Know its Own Translation Quality? [61.866103154161884]
ニューラルマシン翻訳(NMT)は、意識せずに起こる失敗に対してしばしば批判される。
本稿では,従来のNMTを自己推定器で拡張することで,新たな能力認識型NMTを提案する。
提案手法は品質評価において優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2022-11-25T02:39:41Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
CsaNMT(Continuous Semantic Augmentation)と呼ばれる新しいデータ拡張パラダイムを提案する。
CsaNMTは各トレーニングインスタンスを、同じ意味の下で適切なリテラル式をカバーできる隣接領域で拡張する。
論文 参考訳(メタデータ) (2022-04-14T08:16:28Z) - Self-supervised and Supervised Joint Training for Resource-rich Machine
Translation [30.502625878505732]
テキスト表現の自己教師付き事前学習が低リソースニューラルネットワーク翻訳(NMT)に成功している
我々は,NMTモデルを最適化するために,自己教師付き学習と教師付き学習を組み合わせた共同学習手法である$F$-XEnDecを提案する。
論文 参考訳(メタデータ) (2021-06-08T02:35:40Z) - PheMT: A Phenomenon-wise Dataset for Machine Translation Robustness on
User-Generated Contents [40.25277134147149]
日本語翻訳における特定の言語現象に対するMTシステムの堅牢性を評価するための新しいデータセットであるPheMTを提案する。
作成したデータセットを用いて行った実験では、社内モデルだけでなく、市販のシステムでも、特定の現象の存在によって大きく混乱していることが明らかになりました。
論文 参考訳(メタデータ) (2020-11-04T04:44:47Z) - Explicit Reordering for Neural Machine Translation [50.70683739103066]
Transformer-based neural machine translation (NMT)では、位置符号化機構は、自己アテンションネットワークが順序依存でソース表現を学習するのに役立つ。
本研究では,トランスフォーマーベースのNMTに対して,このリオーダ情報を明示的にモデル化する新しいリオーダ手法を提案する。
WMT14, WAT ASPEC日本語訳, WMT17中国語訳の実証結果から, 提案手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-04-08T05:28:46Z) - Learning Contextualized Sentence Representations for Document-Level
Neural Machine Translation [59.191079800436114]
文書レベルの機械翻訳は、文間の依存関係をソース文の翻訳に組み込む。
本稿では,ニューラルマシン翻訳(NMT)を訓練し,文のターゲット翻訳と周辺文の双方を予測することによって,文間の依存関係をモデル化するフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-30T03:38:01Z) - Modeling Future Cost for Neural Machine Translation [62.427034890537676]
提案手法は,NTTシステムにおける各目標語の将来コストをモデル化するための簡易かつ効率的な手法である。
提案手法は強力なTransformerベースのNMTベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-02-28T05:37:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。