Co-Activation Graph Analysis of Safety-Verified and Explainable Deep Reinforcement Learning Policies
- URL: http://arxiv.org/abs/2501.03142v1
- Date: Mon, 06 Jan 2025 17:07:44 GMT
- Title: Co-Activation Graph Analysis of Safety-Verified and Explainable Deep Reinforcement Learning Policies
- Authors: Dennis Gross, Helge Spieker,
- Abstract summary: Deep reinforcement learning (RL) policies can demonstrate unsafe behaviors and are challenging to interpret.
We combine RL policy model checking and co-activation graph analysis.
This combination lets us interpret the RL policy's inner workings for safe decision-making.
- Score: 5.923818043882103
- License:
- Abstract: Deep reinforcement learning (RL) policies can demonstrate unsafe behaviors and are challenging to interpret. To address these challenges, we combine RL policy model checking--a technique for determining whether RL policies exhibit unsafe behaviors--with co-activation graph analysis--a method that maps neural network inner workings by analyzing neuron activation patterns--to gain insight into the safe RL policy's sequential decision-making. This combination lets us interpret the RL policy's inner workings for safe decision-making. We demonstrate its applicability in various experiments.
Related papers
- Safety-Oriented Pruning and Interpretation of Reinforcement Learning Policies [5.923818043882103]
Pruning neural networks (NNs) can streamline them but risks removing vital parameters from safe reinforcement learning (RL) policies.
We introduce an interpretable RL method called VERINTER, which combines NN pruning with model checking to ensure interpretable RL safety.
arXiv Detail & Related papers (2024-09-16T12:13:41Z) - Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression [53.33734159983431]
This paper introduces a novel approach to distill neural RL policies into more interpretable forms.
We train expert neural network policies using RL and distill them into (i) GBMs, (ii) EBMs, and (iii) symbolic policies.
arXiv Detail & Related papers (2024-03-21T11:54:45Z) - Discovering Behavioral Modes in Deep Reinforcement Learning Policies
Using Trajectory Clustering in Latent Space [0.0]
We introduce a new approach for investigating the behavior modes of DRL policies.
Specifically, we use Pairwise Controlled Manifold Approximation Projection (PaCMAP) for dimensionality reduction and TRACLUS for trajectory clustering.
Our methodology helps identify diverse behavior patterns and suboptimal choices by the policy, thus allowing for targeted improvements.
arXiv Detail & Related papers (2024-02-20T11:50:50Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Offline Reinforcement Learning with On-Policy Q-Function Regularization [57.09073809901382]
We deal with the (potentially catastrophic) extrapolation error induced by the distribution shift between the history dataset and the desired policy.
We propose two algorithms taking advantage of the estimated Q-function through regularizations, and demonstrate they exhibit strong performance on the D4RL benchmarks.
arXiv Detail & Related papers (2023-07-25T21:38:08Z) - Verified Probabilistic Policies for Deep Reinforcement Learning [6.85316573653194]
We tackle the problem of verifying probabilistic policies for deep reinforcement learning.
We propose an abstraction approach, based on interval Markov decision processes, that yields guarantees on a policy's execution.
We present techniques to build and solve these models using abstract interpretation, mixed-integer linear programming, entropy-based refinement and probabilistic model checking.
arXiv Detail & Related papers (2022-01-10T23:55:04Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - Expert-Supervised Reinforcement Learning for Offline Policy Learning and
Evaluation [21.703965401500913]
We propose an Expert-Supervised RL (ESRL) framework which uses uncertainty quantification for offline policy learning.
In particular, we have three contributions: 1) the method can learn safe and optimal policies through hypothesis testing, 2) ESRL allows for different levels of risk averse implementations tailored to the application context, and 3) we propose a way to interpret ESRL's policy at every state through posterior distributions.
arXiv Detail & Related papers (2020-06-23T17:43:44Z) - Continuous Action Reinforcement Learning from a Mixture of Interpretable
Experts [35.80418547105711]
We propose a policy scheme that retains a complex function approxor for its internal value predictions but constrains the policy to have a concise, hierarchical, and human-readable structure.
The main technical contribution of the paper is to address the challenges introduced by this non-differentiable state selection procedure.
arXiv Detail & Related papers (2020-06-10T16:02:08Z) - Cautious Reinforcement Learning with Logical Constraints [78.96597639789279]
An adaptive safe padding forces Reinforcement Learning (RL) to synthesise optimal control policies while ensuring safety during the learning process.
Theoretical guarantees are available on the optimality of the synthesised policies and on the convergence of the learning algorithm.
arXiv Detail & Related papers (2020-02-26T00:01:08Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.