Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches
- URL: http://arxiv.org/abs/2501.03151v1
- Date: Mon, 06 Jan 2025 17:18:47 GMT
- Title: Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches
- Authors: Alhassan Mumuni, Fuseini Mumuni,
- Abstract summary: Multimodal large language models (MLLMs) learn from vast and diverse data sources.
Despite this impressive feat, the cognitive abilities of state-of-the-art LLMs trained on large-scale datasets are still superficial and brittle.
We discuss how the principles of embodiment, symbol grounding, causality and memory can be leveraged toward the attainment of artificial general intelligence (AGI) in an organic manner.
- Score: 0.0
- License:
- Abstract: Generative artificial intelligence (AI) systems based on large-scale pretrained foundation models (PFMs) such as vision-language models, large language models (LLMs), diffusion models and vision-language-action (VLA) models have demonstrated the ability to solve complex and truly non-trivial AI problems in a wide variety of domains and contexts. Multimodal large language models (MLLMs), in particular, learn from vast and diverse data sources, allowing rich and nuanced representations of the world and, thereby, providing extensive capabilities, including the ability to reason, engage in meaningful dialog; collaborate with humans and other agents to jointly solve complex problems; and understand social and emotional aspects of humans. Despite this impressive feat, the cognitive abilities of state-of-the-art LLMs trained on large-scale datasets are still superficial and brittle. Consequently, generic LLMs are severely limited in their generalist capabilities. A number of foundational problems -- embodiment, symbol grounding, causality and memory -- are required to be addressed for LLMs to attain human-level general intelligence. These concepts are more aligned with human cognition and provide LLMs with inherent human-like cognitive properties that support the realization of physically-plausible, semantically meaningful, flexible and more generalizable knowledge and intelligence. In this work, we discuss the aforementioned foundational issues and survey state-of-the art approaches for implementing these concepts in LLMs. Specifically, we discuss how the principles of embodiment, symbol grounding, causality and memory can be leveraged toward the attainment of artificial general intelligence (AGI) in an organic manner.
Related papers
- The Philosophical Foundations of Growing AI Like A Child [0.0]
This paper argues that both challenges stem from a core discrepancy between human and machine cognitive development.
It explores empirical evidence of core knowledge in humans, analyzes why language models fail to acquire it, and argues that this limitation is not an inherent architectural constraint.
arXiv Detail & Related papers (2025-02-15T09:47:20Z) - Neurosymbolic Graph Enrichment for Grounded World Models [47.92947508449361]
We present a novel approach to enhance and exploit LLM reactive capability to address complex problems.
We create a multimodal, knowledge-augmented formal representation of meaning that combines the strengths of large language models with structured semantic representations.
By bridging the gap between unstructured language models and formal semantic structures, our method opens new avenues for tackling intricate problems in natural language understanding and reasoning.
arXiv Detail & Related papers (2024-11-19T17:23:55Z) - A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks [5.0453036768975075]
Large language models (MLLMs) integrate text, images, video and audio to enable AI systems for cross-modal understanding and generation.
Book examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning.
Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights.
arXiv Detail & Related papers (2024-11-09T20:56:23Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Human-like object concept representations emerge naturally in multimodal large language models [24.003766123531545]
We combined behavioral and neuroimaging analysis methods to uncover how the object concept representations in Large Language Models correlate with those of humans.
The resulting 66-dimensional embeddings were found to be highly stable and predictive, and exhibited semantic clustering akin to human mental representations.
This study advances our understanding of machine intelligence and informs the development of more human-like artificial cognitive systems.
arXiv Detail & Related papers (2024-07-01T08:17:19Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - Synergistic Integration of Large Language Models and Cognitive
Architectures for Robust AI: An Exploratory Analysis [12.9222727028798]
This paper explores the integration of two AI subdisciplines employed in the development of artificial agents that exhibit intelligent behavior: Large Language Models (LLMs) and Cognitive Architectures (CAs)
We present three integration approaches, each grounded in theoretical models and supported by preliminary empirical evidence.
These approaches aim to harness the strengths of both LLMs and CAs, while mitigating their weaknesses, thereby advancing the development of more robust AI systems.
arXiv Detail & Related papers (2023-08-18T21:42:47Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
We propose four characteristics of generally intelligent agents.
We argue that active engagement with objects in the real world delivers more robust signals for forming conceptual representations.
We conclude by outlining promising future research directions in the field of artificial general intelligence.
arXiv Detail & Related papers (2023-07-07T13:58:16Z) - Imagination-Augmented Natural Language Understanding [71.51687221130925]
We introduce an Imagination-Augmented Cross-modal (iACE) to solve natural language understanding tasks.
iACE enables visual imagination with external knowledge transferred from the powerful generative and pre-trained vision-and-language models.
Experiments on GLUE and SWAG show that iACE achieves consistent improvement over visually-supervised pre-trained models.
arXiv Detail & Related papers (2022-04-18T19:39:36Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.