The Philosophical Foundations of Growing AI Like A Child
- URL: http://arxiv.org/abs/2502.10742v1
- Date: Sat, 15 Feb 2025 09:47:20 GMT
- Title: The Philosophical Foundations of Growing AI Like A Child
- Authors: Dezhi Luo, Yijiang Li, Hokin Deng,
- Abstract summary: This paper argues that both challenges stem from a core discrepancy between human and machine cognitive development.
It explores empirical evidence of core knowledge in humans, analyzes why language models fail to acquire it, and argues that this limitation is not an inherent architectural constraint.
- Score: 0.0
- License:
- Abstract: Despite excelling in high-level reasoning, current language models lack robustness in real-world scenarios and perform poorly on fundamental problem-solving tasks that are intuitive to humans. This paper argues that both challenges stem from a core discrepancy between human and machine cognitive development. While both systems rely on increasing representational power, the absence of core knowledge-foundational cognitive structures in humans-prevents language models from developing robust, generalizable abilities, where complex skills are grounded in simpler ones within their respective domains. It explores empirical evidence of core knowledge in humans, analyzes why language models fail to acquire it, and argues that this limitation is not an inherent architectural constraint. Finally, it outlines a workable proposal for systematically integrating core knowledge into future multi-modal language models through the large-scale generation of synthetic training data using a cognitive prototyping strategy.
Related papers
- Large language models for artificial general intelligence (AGI): A survey of foundational principles and approaches [0.0]
Multimodal large language models (MLLMs) learn from vast and diverse data sources.
Despite this impressive feat, the cognitive abilities of state-of-the-art LLMs trained on large-scale datasets are still superficial and brittle.
We discuss how the principles of embodiment, symbol grounding, causality and memory can be leveraged toward the attainment of artificial general intelligence (AGI) in an organic manner.
arXiv Detail & Related papers (2025-01-06T17:18:47Z) - The Superalignment of Superhuman Intelligence with Large Language Models [63.96120398355404]
We discuss the concept of superalignment from the learning perspective to answer this question.
We highlight some key research problems in superalignment, namely, weak-to-strong generalization, scalable oversight, and evaluation.
We present a conceptual framework for superalignment, which consists of three modules: an attacker which generates adversary queries trying to expose the weaknesses of a learner model; a learner which will refine itself by learning from scalable feedbacks generated by a critic model along with minimal human experts; and a critic which generates critics or explanations for a given query-response pair, with a target of improving the learner by criticizing.
arXiv Detail & Related papers (2024-12-15T10:34:06Z) - Trustworthy Alignment of Retrieval-Augmented Large Language Models via Reinforcement Learning [84.94709351266557]
We focus on the trustworthiness of language models with respect to retrieval augmentation.
We deem that retrieval-augmented language models have the inherent capabilities of supplying response according to both contextual and parametric knowledge.
Inspired by aligning language models with human preference, we take the first step towards aligning retrieval-augmented language models to a status where it responds relying merely on the external evidence.
arXiv Detail & Related papers (2024-10-22T09:25:21Z) - Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024) [16.282850445579857]
Reasoning is an essential component of human intelligence as it plays a fundamental role in our ability to think critically.
Recent leap forward in natural language processing, with the emergence of language models based on transformers, is hinting at the possibility that these models exhibit reasoning abilities.
Despite ongoing discussions about what reasoning is in language models, it is still not easy to pin down to what extent these models are actually capable of reasoning.
arXiv Detail & Related papers (2024-10-07T02:31:47Z) - Visual-O1: Understanding Ambiguous Instructions via Multi-modal Multi-turn Chain-of-thoughts Reasoning [53.45295657891099]
This paper proposes Visual-O1, a multi-modal multi-turn chain-of-thought reasoning framework.
It simulates human multi-modal multi-turn reasoning, providing instantial experience for highly intelligent models.
Our work highlights the potential of artificial intelligence to work like humans in real-world scenarios with uncertainty and ambiguity.
arXiv Detail & Related papers (2024-10-04T11:18:41Z) - Improving deep learning with prior knowledge and cognitive models: A
survey on enhancing explainability, adversarial robustness and zero-shot
learning [0.0]
We review current and emerging knowledge-informed and brain-inspired cognitive systems for realizing adversarial defenses.
Brain-inspired cognition methods use computational models that mimic the human mind to enhance intelligent behavior in artificial agents and autonomous robots.
arXiv Detail & Related papers (2024-03-11T18:11:00Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - Beyond Interpretable Benchmarks: Contextual Learning through Cognitive
and Multimodal Perception [0.0]
This study contends that the Turing Test is misinterpreted as an attempt to anthropomorphize computer systems.
It emphasizes tacit learning as a cornerstone of general-purpose intelligence, despite its lack of overt interpretability.
arXiv Detail & Related papers (2022-12-04T08:30:04Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
Huge language models (LMs) have ushered in a new era for AI, serving as a gateway to natural-language-based knowledge tasks.
We define a flexible architecture with multiple neural models, complemented by discrete knowledge and reasoning modules.
We describe this neuro-symbolic architecture, dubbed the Modular Reasoning, Knowledge and Language (MRKL) system.
arXiv Detail & Related papers (2022-05-01T11:01:28Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.