Human-like object concept representations emerge naturally in multimodal large language models
- URL: http://arxiv.org/abs/2407.01067v1
- Date: Mon, 1 Jul 2024 08:17:19 GMT
- Title: Human-like object concept representations emerge naturally in multimodal large language models
- Authors: Changde Du, Kaicheng Fu, Bincheng Wen, Yi Sun, Jie Peng, Wei Wei, Ying Gao, Shengpei Wang, Chuncheng Zhang, Jinpeng Li, Shuang Qiu, Le Chang, Huiguang He,
- Abstract summary: We combined behavioral and neuroimaging analysis methods to uncover how the object concept representations in Large Language Models correlate with those of humans.
The resulting 66-dimensional embeddings were found to be highly stable and predictive, and exhibited semantic clustering akin to human mental representations.
This study advances our understanding of machine intelligence and informs the development of more human-like artificial cognitive systems.
- Score: 24.003766123531545
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The conceptualization and categorization of natural objects in the human mind have long intrigued cognitive scientists and neuroscientists, offering crucial insights into human perception and cognition. Recently, the rapid development of Large Language Models (LLMs) has raised the attractive question of whether these models can also develop human-like object representations through exposure to vast amounts of linguistic and multimodal data. In this study, we combined behavioral and neuroimaging analysis methods to uncover how the object concept representations in LLMs correlate with those of humans. By collecting large-scale datasets of 4.7 million triplet judgments from LLM and Multimodal LLM (MLLM), we were able to derive low-dimensional embeddings that capture the underlying similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were found to be highly stable and predictive, and exhibited semantic clustering akin to human mental representations. Interestingly, the interpretability of the dimensions underlying these embeddings suggests that LLM and MLLM have developed human-like conceptual representations of natural objects. Further analysis demonstrated strong alignment between the identified model embeddings and neural activity patterns in many functionally defined brain ROIs (e.g., EBA, PPA, RSC and FFA). This provides compelling evidence that the object representations in LLMs, while not identical to those in the human, share fundamental commonalities that reflect key schemas of human conceptual knowledge. This study advances our understanding of machine intelligence and informs the development of more human-like artificial cognitive systems.
Related papers
- Large Language Models as Neurolinguistic Subjects: Identifying Internal Representations for Form and Meaning [49.60849499134362]
This study investigates the linguistic understanding of Large Language Models (LLMs) regarding signifier (form) and signified (meaning)
Traditional psycholinguistic evaluations often reflect statistical biases that may misrepresent LLMs' true linguistic capabilities.
We introduce a neurolinguistic approach, utilizing a novel method that combines minimal pair and diagnostic probing to analyze activation patterns across model layers.
arXiv Detail & Related papers (2024-11-12T04:16:44Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Human Simulacra: Benchmarking the Personification of Large Language Models [38.21708264569801]
Large language models (LLMs) are recognized as systems that closely mimic aspects of human intelligence.
This paper introduces a framework for constructing virtual characters' life stories from the ground up.
Experimental results demonstrate that our constructed simulacra can produce personified responses that align with their target characters.
arXiv Detail & Related papers (2024-02-28T09:11:14Z) - Large language models as linguistic simulators and cognitive models in human research [0.0]
The rise of large language models (LLMs) that generate human-like text has sparked debates over their potential to replace human participants in behavioral and cognitive research.
We critically evaluate this replacement perspective to appraise the fundamental utility of language models in psychology and social science.
This perspective reframes the role of language models in behavioral and cognitive science, serving as linguistic simulators and cognitive models that shed light on the similarities and differences between machine intelligence and human cognition and thoughts.
arXiv Detail & Related papers (2024-02-06T23:28:23Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Unveiling Theory of Mind in Large Language Models: A Parallel to Single
Neurons in the Human Brain [2.5350521110810056]
Large language models (LLMs) have been found to exhibit a certain level of Theory of Mind (ToM)
The precise processes underlying LLM's capacity for ToM or their similarities with that of humans remains largely unknown.
arXiv Detail & Related papers (2023-09-04T15:26:15Z) - Conceptual structure coheres in human cognition but not in large
language models [7.405352374343134]
We show that conceptual structure is robust to differences in culture, language, and method of estimation.
Results highlight an important difference between contemporary large language models and human cognition.
arXiv Detail & Related papers (2023-04-05T21:27:01Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
We present a newly-designed multimodal foundation model pre-trained on 15 million image-text pairs.
We find that both visual and lingual encoders trained multimodally are more brain-like compared with unimodal ones.
arXiv Detail & Related papers (2022-08-17T12:36:26Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.