論文の概要: REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
- arxiv url: http://arxiv.org/abs/2501.03262v3
- Date: Sun, 06 Apr 2025 02:23:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 10:46:53.515754
- Title: REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
- Title(参考訳): REINFORCE++: PromptモデルとRewardモデルの両方にロバストな効率的なRLHFアルゴリズム
- Authors: Jian Hu, Jason Klein Liu, Wei Shen,
- Abstract要約: REINFORCE++は、バッチの正規化報酬をベースラインとして使用しながら、批判モデルを削除する新しいアプローチである。
プロンプトセットのトランケーションを必要とせずに、様々な報酬モデルに対して堅牢なパフォーマンスを示す。
既存のREINFORCE法と比較して、RLHFとロングチェーン設定の両方において優れた一般化を実現している。
- 参考スコア(独自算出の注目度): 8.587685197004097
- License:
- Abstract: Reinforcement Learning from Human Feedback (RLHF) plays a crucial role in aligning large language models (LLMs) with human values and preferences. While state-of-the-art applications like ChatGPT/GPT-4 commonly employ Proximal Policy Optimization (PPO), the inclusion of a critic network introduces significant computational overhead. REINFORCE-based methods, such as REINFORCE Leave One-Out (RLOO), ReMax, and Group Relative Policy Optimization (GRPO), address this limitation by eliminating the critic network. However, these approaches face challenges in accurate advantage estimation. Specifically, they estimate advantages independently for responses to each prompt, which can lead to overfitting on simpler prompts and vulnerability to reward hacking. To address these challenges, we introduce REINFORCE++, a novel approach that removes the critic model while using the normalized reward of a batch as the baseline. Our empirical evaluation demonstrates that REINFORCE++ exhibits robust performance across various reward models without requiring prompt set truncation. Furthermore, it achieves superior generalization in both RLHF and long chain-of-thought (CoT) settings compared to existing REINFORCE-based methods. The implementation is available at https://github.com/OpenRLHF/OpenRLHF.
- Abstract(参考訳): Reinforcement Learning from Human Feedback (RLHF)は、大きな言語モデル(LLM)と人間の価値観と嗜好の整合において重要な役割を果たす。
ChatGPT/GPT-4のような最先端のアプリケーションでは、PPO(Proximal Policy Optimization)が一般的だが、批判ネットワークが組み込まれているため、計算オーバーヘッドが大幅に増加する。
ReINFORCEベースの手法、例えば、ReINFORCE Leave One-Out (RLOO)、ReMax、Group Relative Policy Optimization (GRPO)は、批判ネットワークを排除してこの制限に対処する。
しかし、これらの手法は正確な優位性推定の課題に直面している。
具体的には、各プロンプトに対する応答に対して独立してアドバンテージを推定する。
これらの課題に対処するために、バッチの正規化報酬をベースラインとして使用しながら、批判モデルを除去する新しいアプローチであるREINFORCE++を導入する。
我々の経験的評価は、REINFORCE++がプロンプトセットのトランケーションを必要とせず、様々な報酬モデルに対して堅牢な性能を示すことを示している。
さらに、既存のREINFORCE法と比較して、RLHFとロングチェーン・オブ・ソート(CoT)設定の両方において優れた一般化を実現している。
実装はhttps://github.com/OpenRLHF/OpenRLHFで公開されている。
関連論文リスト
- Graph-attention-based Casual Discovery with Trust Region-navigated Clipping Policy Optimization [13.75709067982844]
因果発見のための信頼領域探索型クリッピングポリシー最適化手法を提案する。
また、SDGATと呼ばれる改良されたグラフアテンションエンコーダを提案し、効率よく変数を符号化する。
これらの改善により、提案手法は、合成データセットとベンチマークデータセットの両方において、以前のRL法よりも優れている。
論文 参考訳(メタデータ) (2024-12-27T10:50:43Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) は、大きな言語モデル(LLM)を人間の好みに合わせるための重要なツールとして登場した。
直接選好最適化(DPO)は、報酬関数を明示的に見積もることなく、ポリシー最適化問題としてRLHFを定式化する。
本稿では,既存の最適化アルゴリズムを統一したAPO(Accelerated Preference Optimization)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-08T18:51:01Z) - Minor DPO reject penalty to increase training robustness [8.971332948872185]
人間の嗜好からの学習は、ダウンストリームタスクにおいて、事前学習されたLLMを人間の嗜好に合わせるために、大規模言語モデル(LLM)の微調整ステップで使用されるパラダイムである。
近年,簡易なRLフリー手法でアライメント問題を解決するために,DPO(Direct Preference Optimization)が提案されている。
本稿では、DPOにおける$beta$の動作メカニズムを分析し、RLアルゴリズムとDPOの構文差を明らかにし、DPOの単純化による潜在的な不足について理解する。
論文 参考訳(メタデータ) (2024-08-19T09:29:31Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
生成モデルの時代における最小限のRLアルゴリズムであるREBELを提案する。
理論的には、自然ポリシーグラディエントのような基本的なRLアルゴリズムはREBELの変種と見なすことができる。
我々はREBELが言語モデリングと画像生成に一貫したアプローチを提供し、PPOやDPOとより強くあるいは類似した性能を実現することを発見した。
論文 参考訳(メタデータ) (2024-04-25T17:20:45Z) - Back to Basics: Revisiting REINFORCE Style Optimization for Learning
from Human Feedback in LLMs [29.505270680223003]
ヒューマンフィードバックからの強化学習の形でのAIアライメントは、ハイパフォーマンスな大規模言語モデルにとって重要な要素として扱われている。
近年,RLHF の RL 部分の正準法としてPPO ( Proximal Policy Optimization) が位置づけられている。
PPO の多くのコンポーネントは RLHF の文脈では不要であり、より単純な REINFORCE スタイルの最適化は PPO と DPO や RAFT のような新たに提案された "RL-free" 手法の両方より優れていることを示す。
論文 参考訳(メタデータ) (2024-02-22T17:52:34Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
嗜好データから直接ポリシーを最適化するために、直接選好最適化(DPO)が提案された。
問題の最適解に基づいて導出されたDPOが,現実の最適解の妥協平均探索近似に繋がることを示す。
本稿では、アライメント目的の効率的な精度最適化(EXO)を提案する。
論文 参考訳(メタデータ) (2024-02-01T18:51:54Z) - Preference as Reward, Maximum Preference Optimization with Importance Sampling [3.7040071165219595]
我々は、重要サンプリングの観点から、単純で直感的な非政治的選好最適化アルゴリズムを提案し、これを最大選好最適化(MPO)と呼ぶ。
MPOは、RLHFとIPOの目的を、独占的アルゴリズムであると同時に組み合わせることで、両方の世界のベストを達成している。
論文 参考訳(メタデータ) (2023-12-27T06:34:54Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
大規模言語モデル (LLMs) は、人工知能の進歩のためのブループリントを定式化した。
人間のフィードバックによる強化学習(RLHF)がこの追求を支える重要な技術パラダイムとして出現する。
本稿では、RLHFの枠組みを解明し、PPOの内部構造を再評価し、PPOアルゴリズムを構成する部分が政策エージェントの訓練にどのように影響するかを考察する。
論文 参考訳(メタデータ) (2023-07-11T01:55:24Z) - Fine-Tuning Language Models with Advantage-Induced Policy Alignment [80.96507425217472]
大規模言語モデルと人間の嗜好を整合させる新しいアルゴリズムを提案する。
言語タスクにおいてPPOを常に上回り、大きなマージンを持つことを示す。
また,損失関数の設計を支援する理論的正当性も提供する。
論文 参考訳(メタデータ) (2023-06-04T01:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。