論文の概要: REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
- arxiv url: http://arxiv.org/abs/2501.03262v3
- Date: Sun, 06 Apr 2025 02:23:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 13:54:08.97803
- Title: REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
- Title(参考訳): REINFORCE++: PromptモデルとRewardモデルの両方にロバストな効率的なRLHFアルゴリズム
- Authors: Jian Hu, Jason Klein Liu, Wei Shen,
- Abstract要約: REINFORCE++は、バッチの正規化報酬をベースラインとして使用しながら、批判モデルを削除する新しいアプローチである。
プロンプトセットのトランケーションを必要とせずに、様々な報酬モデルに対して堅牢なパフォーマンスを示す。
既存のREINFORCE法と比較して、RLHFとロングチェーン設定の両方において優れた一般化を実現している。
- 参考スコア(独自算出の注目度): 8.587685197004097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning from Human Feedback (RLHF) plays a crucial role in aligning large language models (LLMs) with human values and preferences. While state-of-the-art applications like ChatGPT/GPT-4 commonly employ Proximal Policy Optimization (PPO), the inclusion of a critic network introduces significant computational overhead. REINFORCE-based methods, such as REINFORCE Leave One-Out (RLOO), ReMax, and Group Relative Policy Optimization (GRPO), address this limitation by eliminating the critic network. However, these approaches face challenges in accurate advantage estimation. Specifically, they estimate advantages independently for responses to each prompt, which can lead to overfitting on simpler prompts and vulnerability to reward hacking. To address these challenges, we introduce REINFORCE++, a novel approach that removes the critic model while using the normalized reward of a batch as the baseline. Our empirical evaluation demonstrates that REINFORCE++ exhibits robust performance across various reward models without requiring prompt set truncation. Furthermore, it achieves superior generalization in both RLHF and long chain-of-thought (CoT) settings compared to existing REINFORCE-based methods. The implementation is available at https://github.com/OpenRLHF/OpenRLHF.
- Abstract(参考訳): Reinforcement Learning from Human Feedback (RLHF)は、大きな言語モデル(LLM)と人間の価値観と嗜好の整合において重要な役割を果たす。
ChatGPT/GPT-4のような最先端のアプリケーションでは、PPO(Proximal Policy Optimization)が一般的だが、批判ネットワークが組み込まれているため、計算オーバーヘッドが大幅に増加する。
ReINFORCEベースの手法、例えば、ReINFORCE Leave One-Out (RLOO)、ReMax、Group Relative Policy Optimization (GRPO)は、批判ネットワークを排除してこの制限に対処する。
しかし、これらの手法は正確な優位性推定の課題に直面している。
具体的には、各プロンプトに対する応答に対して独立してアドバンテージを推定する。
これらの課題に対処するために、バッチの正規化報酬をベースラインとして使用しながら、批判モデルを除去する新しいアプローチであるREINFORCE++を導入する。
我々の経験的評価は、REINFORCE++がプロンプトセットのトランケーションを必要とせず、様々な報酬モデルに対して堅牢な性能を示すことを示している。
さらに、既存のREINFORCE法と比較して、RLHFとロングチェーン・オブ・ソート(CoT)設定の両方において優れた一般化を実現している。
実装はhttps://github.com/OpenRLHF/OpenRLHFで公開されている。
関連論文リスト
- Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning [3.30671592417223]
人間からのフィードバックからの強化学習(RLHF)は、大規模言語モデルの出力と人間の嗜好を整合させる重要な手法として登場した。
既存のRLHFアルゴリズムの多くはBradley-Terryモデルを使用しており、これは人間の好みに関する仮定に依存しており、現実世界の判断の複雑さや変動性を反映していない。
そこで我々は,そのような報酬モデルの不特定条件下での既存手法の性能向上のための頑健なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-03T16:16:35Z) - Lean and Mean: Decoupled Value Policy Optimization with Global Value Guidance [52.65461207786633]
政策に基づく人間からのフィードバックからの強化学習は、大きな言語モデルと人間の嗜好の整合に不可欠である。
俳優と批評家の合同トレーニングと、事前訓練された一定の報酬モデルによる指導が必要である。
従来の報酬モデリングを事前訓練されたEmphglobal Value Model(GVM)に置き換えるリーンフレームワークである textbfDecoupled Value Policy Optimization (DVPO) を提案する。
論文 参考訳(メタデータ) (2025-02-24T08:11:33Z) - Graph-attention-based Casual Discovery with Trust Region-navigated Clipping Policy Optimization [13.75709067982844]
因果発見のための信頼領域探索型クリッピングポリシー最適化手法を提案する。
また、SDGATと呼ばれる改良されたグラフアテンションエンコーダを提案し、効率よく変数を符号化する。
これらの改善により、提案手法は、合成データセットとベンチマークデータセットの両方において、以前のRL法よりも優れている。
論文 参考訳(メタデータ) (2024-12-27T10:50:43Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) は、大きな言語モデル(LLM)を人間の好みに合わせるための重要なツールとして登場した。
直接選好最適化(DPO)は、報酬関数を明示的に見積もることなく、ポリシー最適化問題としてRLHFを定式化する。
本稿では,既存の最適化アルゴリズムを統一したAPO(Accelerated Preference Optimization)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-08T18:51:01Z) - The Perfect Blend: Redefining RLHF with Mixture of Judges [68.58426626501883]
人間のフィードバックによる強化学習(RLHF)が,大規模言語モデル(LLM)の指導的アプローチとなっている。
MTLにRLHFを適用するには、現在、報酬モデルとデータの組み合わせに対する重み付けを慎重に調整する必要がある。
CGPO(Constrained Generative Policy Optimization)と呼ばれる新しいポストトレーニングパラダイムを導入する。
論文 参考訳(メタデータ) (2024-09-30T15:06:53Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference [15.038210624870656]
リワード推論は、ヒューマンフィードバックパイプラインからの強化学習における重要な中間ステップである。
本稿では,帯域幅を超える一般RL問題と決定論的MDP帯域幅,Bradley-Terryモデルを超える一般選好モデルについて,報酬推論のない2つのRLHFアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-09-25T22:20:11Z) - REBEL: Reinforcement Learning via Regressing Relative Rewards [59.68420022466047]
生成モデルの時代における最小限のRLアルゴリズムであるREBELを提案する。
理論的には、自然ポリシーグラディエントのような基本的なRLアルゴリズムはREBELの変種と見なすことができる。
我々はREBELが言語モデリングと画像生成に一貫したアプローチを提供し、PPOやDPOとより強くあるいは類似した性能を実現することを発見した。
論文 参考訳(メタデータ) (2024-04-25T17:20:45Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
嗜好データから直接ポリシーを最適化するために、直接選好最適化(DPO)が提案された。
問題の最適解に基づいて導出されたDPOが,現実の最適解の妥協平均探索近似に繋がることを示す。
本稿では、アライメント目的の効率的な精度最適化(EXO)を提案する。
論文 参考訳(メタデータ) (2024-02-01T18:51:54Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存している。
報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-01-30T00:17:37Z) - Preference as Reward, Maximum Preference Optimization with Importance Sampling [3.7040071165219595]
我々は、重要サンプリングの観点から、単純で直感的な非政治的選好最適化アルゴリズムを提案し、これを最大選好最適化(MPO)と呼ぶ。
MPOは、RLHFとIPOの目的を、独占的アルゴリズムであると同時に組み合わせることで、両方の世界のベストを達成している。
論文 参考訳(メタデータ) (2023-12-27T06:34:54Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
報酬関数と人間の嗜好の相違は、現実世界で破滅的な結果をもたらす可能性がある。
近年の手法は、人間の嗜好から報酬関数を学習することで、不適応を緩和することを目的としている。
本稿では,ロボットRLHFフレームワークにおける報酬正規化の新たな概念を提案する。
論文 参考訳(メタデータ) (2023-12-22T04:56:37Z) - SuperHF: Supervised Iterative Learning from Human Feedback [20.22920163075946]
我々は,大規模言語モデル,Supervised Fine-Tuning (SFT) とReinforcement Learning from Human Feedback (RLHF) の2つの一般的な手法に着目した。
両手法の強みを生かした新しい手法であるSupervised Iterative Learning from Human Feedback (SuperHF)を提案する。
実験の結果,SuperHF は PPO ベースの RLHF を超え,高い報酬を低報酬ハッキングで容易にかつ好意的に取り除き,下流校正を改善し,GPT-4 ベースの定性評価スキームでも同様に実施し,実装は極めて簡単であった。
論文 参考訳(メタデータ) (2023-10-25T16:52:00Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
本稿では、報酬関数を学習せずに好みから最適なポリシーを学習するアルゴリズムであるContrastive Preference Learning (CPL)を紹介する。
CPLは完全に非政治的であり、単純なコントラスト目的のみを使用し、任意のMDPに適用できる。
論文 参考訳(メタデータ) (2023-10-20T16:37:56Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
本稿では,RLHFにおける報酬モデルの新たなパラメータ化について紹介する。
DPO(Direct Preference Optimization)と呼ばれる結果のアルゴリズムは、安定的で、性能が高く、計算的にも軽量である。
我々の実験は、DPOが人間の好みに合わせて微調整できるだけでなく、既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-29T17:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。