論文の概要: Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble
- arxiv url: http://arxiv.org/abs/2401.16635v3
- Date: Tue, 22 Oct 2024 06:19:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:26:39.756045
- Title: Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble
- Title(参考訳): 効率的なリワードモデルアンサンブルによる強化学習の改善
- Authors: Shun Zhang, Zhenfang Chen, Sunli Chen, Yikang Shen, Zhiqing Sun, Chuang Gan,
- Abstract要約: 人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存している。
報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
- 参考スコア(独自算出の注目度): 67.4269821365504
- License:
- Abstract: Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values. However, RLHF relies on a reward model that is trained with a limited amount of human preference data, which could lead to inaccurate predictions. As a result, RLHF may produce outputs that are misaligned with human values. To mitigate this issue, we contribute a reward ensemble method that allows the reward model to make more accurate predictions. As using an ensemble of large language model-based reward models can be computationally and resource-expensive, we explore efficient ensemble methods including linear-layer ensemble and LoRA-based ensemble. Empirically, we run Best-of-$n$ and Proximal Policy Optimization with our ensembled reward models, and verify that our ensemble methods help improve the alignment performance of RLHF outputs.
- Abstract(参考訳): 人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存しており、不正確な予測につながる可能性がある。
その結果、RLHFは人間の値と不一致な出力を生成することができる。
この問題を軽減するため,報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
大規模言語モデルに基づく報酬モデルのアンサンブルを用いた場合、線形層アンサンブルやLoRAベースのアンサンブルを含む効率的なアンサンブル手法を探索する。
実験的に、我々はアンサンブルされた報酬モデルを用いてBest-of-n$とProximal Policy Optimizationを実行し、我々のアンサンブル手法がRLHF出力のアライメント性能の向上に役立つことを検証した。
関連論文リスト
- Optimal Design for Reward Modeling in RLHF [83.3614658277817]
我々は,人間からの強化学習における報酬訓練モデルを定式化する。
有効なデータセットの選択は、単純な後悔の最小化タスクとしてフレーム化します。
適切な前提の下では、単純な後悔に縛られる。
論文 参考訳(メタデータ) (2024-10-22T14:36:44Z) - How to Evaluate Reward Models for RLHF [51.31240621943791]
我々は、RLHF(Reinforcement Learning from Human Feedback)を通して強力な言語モデルを生成する能力を定量化する報酬モデルのための新しいベンチマークを導入する。
我々は,プロキシタスクの報酬モデルを評価することにより,下流LLM性能の予測モデルを構築した。
大規模クラウドソースによる人選好プラットフォーム上でのエンドツーエンドのRLHF実験をローンチした。
論文 参考訳(メタデータ) (2024-10-18T21:38:21Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
強化学習(Reinforcement Learning from Human Feedback, RLHF)は、言語モデルを人間中心の値と密接に整合させる手法である。
学習した報奨モデルに対して過度に最適化すると、最終的には真の目的が損なわれることが観察された。
本稿では、これらの問題を考察し、「Iterative Data Smoothing」(IDS)と呼ばれる改良された報酬学習アルゴリズムの設計に理論的知見を活用する。
論文 参考訳(メタデータ) (2024-01-29T17:43:42Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from
Human Feedback [5.037876196534672]
人間のフィードバックからの強化学習(RLHF)は、複雑な環境で大きな言語モデル(LLM)をより有効にするための強力な技術として登場した。
本稿では,本問題の原因を概説し,モデルに基づく強化学習から関連する文献をレビューし,解決策について議論する。
論文 参考訳(メタデータ) (2023-10-31T21:52:41Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
本稿では,RLHFにおける報酬モデルの新たなパラメータ化について紹介する。
DPO(Direct Preference Optimization)と呼ばれる結果のアルゴリズムは、安定的で、性能が高く、計算的にも軽量である。
我々の実験は、DPOが人間の好みに合わせて微調整できるだけでなく、既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-29T17:57:46Z) - SLiC-HF: Sequence Likelihood Calibration with Human Feedback [35.74135968442311]
最近導入されたSequence Likelihood(SLiC)は、人間の嗜好から効果的に学習できることを示す。
TL;DR要約タスクの実験により、SLiC-HFは教師付き微調整ベースラインを大幅に改善することが示された。
論文 参考訳(メタデータ) (2023-05-17T17:57:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。