論文の概要: Optimizing Edge AI: A Comprehensive Survey on Data, Model, and System Strategies
- arxiv url: http://arxiv.org/abs/2501.03265v1
- Date: Sat, 04 Jan 2025 06:17:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:50:29.411688
- Title: Optimizing Edge AI: A Comprehensive Survey on Data, Model, and System Strategies
- Title(参考訳): Edge AIの最適化 - データ、モデル、システム戦略に関する総合的な調査
- Authors: Xubin Wang, Weijia Jia,
- Abstract要約: 5Gとエッジコンピューティングハードウェアは、人工知能に大きな変化をもたらした。
リソース制約のあるエッジデバイスに最先端のAIモデルをデプロイすることは、大きな課題に直面している。
本稿では,効率的かつ信頼性の高いエッジAIデプロイメントのための最適化トライアドを提案する。
- 参考スコア(独自算出の注目度): 14.115655986504411
- License:
- Abstract: The emergence of 5G and edge computing hardware has brought about a significant shift in artificial intelligence, with edge AI becoming a crucial technology for enabling intelligent applications. With the growing amount of data generated and stored on edge devices, deploying AI models for local processing and inference has become increasingly necessary. However, deploying state-of-the-art AI models on resource-constrained edge devices faces significant challenges that must be addressed. This paper presents an optimization triad for efficient and reliable edge AI deployment, including data, model, and system optimization. First, we discuss optimizing data through data cleaning, compression, and augmentation to make it more suitable for edge deployment. Second, we explore model design and compression methods at the model level, such as pruning, quantization, and knowledge distillation. Finally, we introduce system optimization techniques like framework support and hardware acceleration to accelerate edge AI workflows. Based on an in-depth analysis of various application scenarios and deployment challenges of edge AI, this paper proposes an optimization paradigm based on the data-model-system triad to enable a whole set of solutions to effectively transfer ML models, which are initially trained in the cloud, to various edge devices for supporting multiple scenarios.
- Abstract(参考訳): 5Gとエッジコンピューティングハードウェアの出現は、人工知能に大きな変化をもたらし、エッジAIはインテリジェントなアプリケーションを実現するための重要な技術となった。
エッジデバイス上に生成および保存されるデータの量の増加に伴い、ローカル処理と推論のためのAIモデルをデプロイする必要性が高まっている。
しかし、リソース制約のあるエッジデバイスに最先端のAIモデルをデプロイすることは、対処しなければならない重要な課題に直面している。
本稿では、データ、モデル、システム最適化を含む、効率的で信頼性の高いエッジAIデプロイメントのための最適化トライアドを提案する。
まず,エッジ配置に適したデータクリーニング,圧縮,拡張によるデータの最適化について検討する。
次に, プルーニング, 量子化, 知識蒸留などのモデルレベルでのモデル設計と圧縮手法について検討する。
最後に,エッジAIワークフローを高速化するフレームワークサポートやハードウェアアクセラレーションなどのシステム最適化手法を紹介する。
本稿では、エッジAIの様々なアプリケーションシナリオと展開課題の詳細な分析に基づいて、データモデルシステムトリアドに基づく最適化パラダイムを提案し、クラウドでトレーニングされたMLモデルを、複数のシナリオをサポートするためのさまざまなエッジデバイスに効果的に移行できるようにする。
関連論文リスト
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI(GenAI)は、カスタマイズされたパーソナライズされたAI生成コンテンツ(AIGC)サービスを可能にするトランスフォーメーション技術として登場した。
これらのサービスは数十億のパラメータを持つGenAIモデルの実行を必要とし、リソース制限の無線エッジに重大な障害を生じさせる。
我々は、AIGC品質とレイテンシメトリクスのトレードオフをバランスさせるために、AIGCサービスのジョイントモデルキャッシングとリソースアロケーションの定式化を導入する。
論文 参考訳(メタデータ) (2024-11-03T07:01:13Z) - Profiling AI Models: Towards Efficient Computation Offloading in Heterogeneous Edge AI Systems [0.2357055571094446]
本稿では、AIモデルのプロファイリング、モデルタイプと基盤となるハードウェアに関するデータ収集、リソース利用とタスク完了時間の予測に焦点を当てた研究ロードマップを提案する。
3,000以上の実行での実験は、リソース割り当ての最適化とEdge AIのパフォーマンス向上を約束している。
論文 参考訳(メタデータ) (2024-10-30T16:07:14Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Resource-Efficient Generative AI Model Deployment in Mobile Edge Networks [15.958822667638405]
エッジ上の利用可能なリソースの不足は、生成AIモデルをデプロイする上で大きな課題を生じさせる。
我々は、エッジ上に生成するAIモデルのデプロイメントを適切に管理することを目的とした、協調的なエッジクラウドフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-09T03:17:28Z) - XEdgeAI: A Human-centered Industrial Inspection Framework with Data-centric Explainable Edge AI Approach [2.0209172586699173]
本稿では,新しいXAI統合視覚品質検査フレームワークを提案する。
我々のフレームワークはXAIとLarge Vision Language Modelを組み込んで人間中心の解釈可能性を提供する。
このアプローチは、重要な産業アプリケーションに信頼性と解釈可能なAIツールを広く採用する道を開くものだ。
論文 参考訳(メタデータ) (2024-07-16T14:30:24Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
トランスフォーマーアーキテクチャを備えた大規模言語モデル(LLM)を含む強力な基礎モデルは、ジェネレーティブAIの新たな時代を支えている。
モデルパラメータの数が数十億に達すると、実際のシナリオにおける推論コストと高いレイテンシーが排除される。
このチュートリアルでは、AIアクセラレータを用いた補完推論最適化テクニックに関する包括的な議論を行っている。
論文 参考訳(メタデータ) (2024-07-12T09:24:34Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AIベースのアプリケーションは、スケジューリングや電力制御などの機能を実行するために、インテリジェントコントローラにデプロイされる。
コンテキストとAIモデルのパラメータのマッピングは、ゼロショット方式で理想的に行われる。
本稿では,AMSマッピングのオンライン最適化のための一般的な手法を紹介する。
論文 参考訳(メタデータ) (2024-06-22T11:17:50Z) - GISTEmbed: Guided In-sample Selection of Training Negatives for Text
Embedding Fine-tuning [0.0]
GISTEmbedは、ガイドモデルによる対照的なトレーニングにおいて、バッチ内のネガティブな選択を強化する新しい戦略である。
MTEB(Massive Text Embedding Benchmark)に対してベンチマークされたGISTEmbedは、さまざまなモデルサイズで一貫したパフォーマンス改善を示している。
論文 参考訳(メタデータ) (2024-02-26T18:55:15Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。