OpenLKA: an open dataset of lane keeping assist from market autonomous vehicles
- URL: http://arxiv.org/abs/2501.03287v1
- Date: Mon, 06 Jan 2025 04:46:10 GMT
- Title: OpenLKA: an open dataset of lane keeping assist from market autonomous vehicles
- Authors: Yuhang Wang, Abdulaziz Alhuraish, Shengming Yuan, Shuyi Wang, Hao Zhou,
- Abstract summary: Lane Keeping Assist (LKA) has become a standard feature in recent car models.
LKA system's operational characteristics and safety performance remain underexplored.
We extensively tested mainstream LKA systems from leading U.S. automakers in Tampa, Florida.
- Score: 23.083443555590065
- License:
- Abstract: The Lane Keeping Assist (LKA) system has become a standard feature in recent car models. While marketed as providing auto-steering capabilities, the system's operational characteristics and safety performance remain underexplored, primarily due to a lack of real-world testing and comprehensive data. To fill this gap, we extensively tested mainstream LKA systems from leading U.S. automakers in Tampa, Florida. Using an innovative method, we collected a comprehensive dataset that includes full Controller Area Network (CAN) messages with LKA attributes, as well as video, perception, and lateral trajectory data from a high-quality front-facing camera equipped with advanced vision detection and trajectory planning algorithms. Our tests spanned diverse, challenging conditions, including complex road geometry, adverse weather, degraded lane markings, and their combinations. A vision language model (VLM) further annotated the videos to capture weather, lighting, and traffic features. Based on this dataset, we present an empirical overview of LKA's operational features and safety performance. Key findings indicate: (i) LKA is vulnerable to faint markings and low pavement contrast; (ii) it struggles in lane transitions (merges, diverges, intersections), often causing unintended departures or disengagements; (iii) steering torque limitations lead to frequent deviations on sharp turns, posing safety risks; and (iv) LKA systems consistently maintain rigid lane-centering, lacking adaptability on tight curves or near large vehicles such as trucks. We conclude by demonstrating how this dataset can guide both infrastructure planning and self-driving technology. In view of LKA's limitations, we recommend improvements in road geometry and pavement maintenance. Additionally, we illustrate how the dataset supports the development of human-like LKA systems via VLM fine-tuning and Chain of Thought reasoning.
Related papers
- An Efficient Approach to Generate Safe Drivable Space by LiDAR-Camera-HDmap Fusion [13.451123257796972]
We propose an accurate and robust perception module for Autonomous Vehicles (AVs) for drivable space extraction.
Our work introduces a robust easy-to-generalize perception module that leverages LiDAR, camera, and HD map data fusion.
Our approach is tested on a real dataset and its reliability is verified during the daily (including harsh snowy weather) operation of our autonomous shuttle, WATonoBus.
arXiv Detail & Related papers (2024-10-29T17:54:02Z) - AGSENet: A Robust Road Ponding Detection Method for Proactive Traffic Safety [30.305692955291033]
Road ponding poses a serious threat to road safety by causing vehicles to lose control and leading to accidents ranging from minor fender benders to severe collisions.
Existing technologies struggle to accurately identify road ponding due to complex road textures and variable ponding coloration influenced by reflection characteristics.
We propose a novel approach called Self-Attention-based Global Saliency-Enhanced Network (AGSENet) for proactive road ponding detection and traffic safety improvement.
arXiv Detail & Related papers (2024-10-22T13:21:36Z) - Homography Guided Temporal Fusion for Road Line and Marking Segmentation [73.47092021519245]
Road lines and markings are frequently occluded in the presence of moving vehicles, shadow, and glare.
We propose a Homography Guided Fusion (HomoFusion) module to exploit temporally-adjacent video frames for complementary cues.
We show that exploiting available camera intrinsic data and ground plane assumption for cross-frame correspondence can lead to a light-weight network with significantly improved performances in speed and accuracy.
arXiv Detail & Related papers (2024-04-11T10:26:40Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
This paper presents MSight, a cutting-edge roadside perception system specifically designed for automated vehicles.
MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction.
Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency.
arXiv Detail & Related papers (2023-10-08T21:32:30Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Lane Detection Model Based on Spatio-Temporal Network With Double
Convolutional Gated Recurrent Units [11.968518335236787]
Lane detection will remain an open problem for some time to come.
A-temporal network with double Conal Gated Recurrent Units (ConvGRUs) proposed to address lane detection in challenging scenes.
Our model can outperform the state-of-the-art lane detection models.
arXiv Detail & Related papers (2020-08-10T06:50:48Z) - A Multi-Agent Reinforcement Learning Approach For Safe and Efficient
Behavior Planning Of Connected Autonomous Vehicles [21.132777568170702]
We design an information-sharing-based reinforcement learning framework for connected autonomous vehicles.
We show that our approach can improve the CAV system's efficiency in terms of average velocity and comfort.
We construct an obstacle-at-corner scenario to show that the shared vision can help CAVs to observe obstacles earlier and take action to avoid traffic jams.
arXiv Detail & Related papers (2020-03-09T19:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.