A Decision-Based Heterogenous Graph Attention Network for Multi-Class Fake News Detection
- URL: http://arxiv.org/abs/2501.03290v1
- Date: Mon, 06 Jan 2025 07:18:31 GMT
- Title: A Decision-Based Heterogenous Graph Attention Network for Multi-Class Fake News Detection
- Authors: Batool Lakzaei, Mostafa Haghir Chehreghani, Alireza Bagheri,
- Abstract summary: We introduce a novel model named Decision-based Heterogeneous Graph Attention Network (DHGAT) for fake news detection in a semi-supervised setting.
DHGAT effectively addresses the limitations of traditional GNNs by dynamically optimizing and selecting the neighborhood type for each node in every layer.
We evaluate DHGAT on the LIAR dataset, a large and challenging dataset for multi-class fake news detection, which includes news items categorized into six classes.
- Score: 2.34863357088666
- License:
- Abstract: A promising tool for addressing fake news detection is Graph Neural Networks (GNNs). However, most existing GNN-based methods rely on binary classification, categorizing news as either real or fake. Additionally, traditional GNN models use a static neighborhood for each node, making them susceptible to issues like over-squashing. In this paper, we introduce a novel model named Decision-based Heterogeneous Graph Attention Network (DHGAT) for fake news detection in a semi-supervised setting. DHGAT effectively addresses the limitations of traditional GNNs by dynamically optimizing and selecting the neighborhood type for each node in every layer. It represents news data as a heterogeneous graph where nodes (news items) are connected by various types of edges. The architecture of DHGAT consists of a decision network that determines the optimal neighborhood type and a representation network that updates node embeddings based on this selection. As a result, each node learns an optimal and task-specific computational graph, enhancing both the accuracy and efficiency of the fake news detection process. We evaluate DHGAT on the LIAR dataset, a large and challenging dataset for multi-class fake news detection, which includes news items categorized into six classes. Our results demonstrate that DHGAT outperforms existing methods, improving accuracy by approximately 4% and showing robustness with limited labeled data.
Related papers
- Neighborhood-Order Learning Graph Attention Network for Fake News Detection [2.34863357088666]
We propose a novel model called Neighborhood-Order Learning Graph Attention Network (NOL-GAT) for fake news detection.
This model allows each node in each layer to independently learn its optimal neighborhood order.
To evaluate the model's performance, experiments are conducted on various fake news datasets.
arXiv Detail & Related papers (2025-02-10T18:51:57Z) - GNN-MultiFix: Addressing the pitfalls for GNNs for multi-label node classification [1.857645719601748]
Graph neural networks (GNNs) have emerged as powerful models for learning representations of graph data.
We show that even the most expressive GNN may fail to learn in absence of node attributes and without using explicit label information as input.
We propose a straightforward approach, referred to as GNN-MultiFix, that integrates the feature, label, and positional information of a node.
arXiv Detail & Related papers (2024-11-21T12:59:39Z) - LOSS-GAT: Label Propagation and One-Class Semi-Supervised Graph
Attention Network for Fake News Detection [2.6396287656676725]
Loss-GAT is a semi-supervised and one-class approach for fake news detection.
We employ a two-step label propagation algorithm to categorize news into two groups: interest (fake) and non-interest (real)
arXiv Detail & Related papers (2024-02-13T12:02:37Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Every Node Counts: Improving the Training of Graph Neural Networks on
Node Classification [9.539495585692007]
We propose novel objective terms for the training of GNNs for node classification.
Our first term seeks to maximize the mutual information between node and label features.
Our second term promotes anisotropic smoothness in the prediction maps.
arXiv Detail & Related papers (2022-11-29T23:25:14Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.