論文の概要: LiLMaps: Learnable Implicit Language Maps
- arxiv url: http://arxiv.org/abs/2501.03304v1
- Date: Mon, 06 Jan 2025 16:04:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:46:17.283565
- Title: LiLMaps: Learnable Implicit Language Maps
- Title(参考訳): LiLMaps: 学習可能な暗黙の言語マップ
- Authors: Evgenii Kruzhkov, Sven Behnke,
- Abstract要約: 本稿では、視覚言語機能の統合により、漸進的な暗黙マッピングを強化するアプローチを提案する。
具体的には、(i)シーンに新しいオブジェクトが現れたときに使用できる暗黙の言語マップのためのデコーダ最適化手法を提案し、(ii)異なる視聴位置間の一貫性のない視覚言語予測の問題に対処する。
- 参考スコア(独自算出の注目度): 18.342569823885864
- License:
- Abstract: One of the current trends in robotics is to employ large language models (LLMs) to provide non-predefined command execution and natural human-robot interaction. It is useful to have an environment map together with its language representation, which can be further utilized by LLMs. Such a comprehensive scene representation enables numerous ways of interaction with the map for autonomously operating robots. In this work, we present an approach that enhances incremental implicit mapping through the integration of vision-language features. Specifically, we (i) propose a decoder optimization technique for implicit language maps which can be used when new objects appear on the scene, and (ii) address the problem of inconsistent vision-language predictions between different viewing positions. Our experiments demonstrate the effectiveness of LiLMaps and solid improvements in performance.
- Abstract(参考訳): ロボット工学の現在のトレンドの1つは、未定義のコマンド実行と自然な人間とロボットの相互作用を提供するために、大きな言語モデル(LLM)を採用することである。
LLMによってさらに活用できる言語表現とともに環境マップを持つことは有用である。
このような総合的なシーン表現は、自律的に操作するロボットの地図と対話する多くの方法を可能にする。
本研究では,視覚言語機能の統合により,漸進的な暗黙マッピングを実現する手法を提案する。
具体的には
i) シーンに新しいオブジェクトが現れたときに使用できる暗黙の言語マップのためのデコーダ最適化手法を提案する。
(II)異なる視聴位置間の不整合視覚言語予測の問題に対処する。
実験では,LiLMapsの有効性と性能の向上を実証した。
関連論文リスト
- MEIA: Multimodal Embodied Perception and Interaction in Unknown Environments [82.67236400004826]
本稿では,自然言語で表現されたハイレベルなタスクを実行可能なアクションのシーケンスに変換するための,MEIA(Multimodal Embodied Interactive Agent)を提案する。
MEMモジュールは、多様な要件とロボットの能力に基づいて、MEIAが実行可能なアクションプランを生成することを可能にする。
論文 参考訳(メタデータ) (2024-02-01T02:43:20Z) - Object-Centric Instruction Augmentation for Robotic Manipulation [29.491990994901666]
我々は,高度にセマンティックで情報に富んだ言語命令を位置情報で拡張するために,textitObject-Centric Instruction Augmentation (OCI)フレームワークを導入する。
MLLM(Multi-modal Large Language Model)を用いて,オブジェクト位置の知識を自然言語に織り込む。
我々は,ロボットマニピュレータの模倣政策が,従来の言語指導にのみ依存する者よりも優れていることを実証した。
論文 参考訳(メタデータ) (2024-01-05T13:54:45Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
視覚言語モデル(VLM)は、視覚的質問応答と推論タスクにおいて強力な能力を示している。
本稿では,異なるモダリティの埋め込み空間を視覚埋め込み空間に整列させる手法を示す。
複数モードを入力として使用すると、VLMのシーン理解が向上し、様々なタスクにおける全体的なパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-08-31T06:53:55Z) - CARTIER: Cartographic lAnguage Reasoning Targeted at Instruction
Execution for Robots [9.393951367344894]
本研究は、空間計画とナビゲーションのための自然言語インタフェースの交わりにおける問題に対処する大規模言語モデルの能力について考察する。
我々は、ロボット工学で一般的に見られる従来の明示的な手続き的指示よりも、自然な会話に近い複雑な指示に従うことに重点を置いている。
我々は3DシミュレータAI2Thorを利用して、大規模な家庭用クエリシナリオを作成し、40のオブジェクトタイプに対して複雑な言語クエリを追加することで拡張する。
論文 参考訳(メタデータ) (2023-07-21T19:09:37Z) - BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs [101.50522135049198]
BuboGPTはマルチモーダルなLLMで、視覚、音声、言語間の相互対話を行うことができる。
1)文中のエンティティを抽出し、画像中の対応するマスクを見つけるSAMに基づく、市販のビジュアルグラウンドモジュール。
実験の結果,BuboGPTは人間との相互作用において,印象的なマルチモーダル理解と視覚的接地能力を実現することがわかった。
論文 参考訳(メタデータ) (2023-07-17T15:51:47Z) - VoxPoser: Composable 3D Value Maps for Robotic Manipulation with
Language Models [38.503337052122234]
大規模言語モデル(LLM)は、ロボット操作のために抽出できる豊富な行動可能な知識を持っていることが示されている。
我々は,オープンな命令セットとオープンなオブジェクトセットが与えられた様々な操作タスクに対して,ロボット軌道を合成することを目指している。
筆者らは,接触に富んだインタラクションを含むシーンのダイナミックスモデルを効率的に学習することで,提案フレームワークがオンライン体験の恩恵を享受できることを実証する。
論文 参考訳(メタデータ) (2023-07-12T07:40:48Z) - Accessible Instruction-Following Agent [0.0]
UVLNは、言語間視覚言語ナビゲーションのための新しい機械翻訳命令拡張フレームワークである。
我々は、標準VLNトレーニング目標を言語間エンコーダを介して多言語設定に拡張する。
Room Across Roomデータセットによる実験は、我々のアプローチの有効性を証明する。
論文 参考訳(メタデータ) (2023-05-08T23:57:26Z) - PaLM-E: An Embodied Multimodal Language Model [101.29116156731762]
本研究では,実世界の連続型センサを言語モデルに組み込むための具体的言語モデルを提案する。
我々は、複数の具体的タスクのために、事前訓練された大規模言語モデルとともに、これらのエンコーディングをエンドツーエンドにトレーニングする。
562Bパラメータを持つ大モデル PaLM-E-562B は、OK-VQA 上での最先端性能を持つ視覚言語ジェネラリストである。
論文 参考訳(メタデータ) (2023-03-06T18:58:06Z) - Pre-Trained Language Models for Interactive Decision-Making [72.77825666035203]
目的と観測を埋め込みのシーケンスとして表現する模倣学習の枠組みを述べる。
このフレームワークは様々な環境にまたがって効果的な一般化を可能にすることを実証する。
新たなゴールや新しいシーンを含むテストタスクでは、言語モデルによる初期化ポリシーはタスク完了率を43.6%改善する。
論文 参考訳(メタデータ) (2022-02-03T18:55:52Z) - Language Models as Zero-Shot Planners: Extracting Actionable Knowledge
for Embodied Agents [111.33545170562337]
自然言語で表現された高レベルなタスクを、選択された実行可能なステップのセットに基底付ける可能性について検討する。
事前学習したLMが十分に大きく、適切に誘導された場合、ハイレベルなタスクを効果的に低レベルな計画に分解できることがわかった。
本稿では,既存の実演の条件を規定し,計画が許容可能な行動に意味的に変換される手順を提案する。
論文 参考訳(メタデータ) (2022-01-18T18:59:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。