論文の概要: Mobile Augmented Reality Framework with Fusional Localization and Pose Estimation
- arxiv url: http://arxiv.org/abs/2501.03336v1
- Date: Mon, 06 Jan 2025 19:02:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:49:41.070930
- Title: Mobile Augmented Reality Framework with Fusional Localization and Pose Estimation
- Title(参考訳): 融合位置推定とポーズ推定を併用したモバイル拡張現実フレームワーク
- Authors: Songlin Hou, Fangzhou Lin, Yunmei Huang, Zhe Peng, Bin Xiao,
- Abstract要約: GPSベースのモバイルARシステムは、通常、屋内環境における不正確な位置決めのため、性能が良くない。
本稿ではまず,モバイルプラットフォーム上での最先端ARとローカライゼーションシステムについて包括的に研究する。
そこで本研究では,効果的な屋内移動型ARフレームワークを提案する。
本フレームワークでは,統合的ローカライズ法と新しいポーズ推定法を開発し,全体のマッチング率を高め,AR表示精度を向上させる。
- 参考スコア(独自算出の注目度): 9.73202312695815
- License:
- Abstract: As a novel way of presenting information, augmented reality (AR) enables people to interact with the physical world in a direct and intuitive way. While there are some mobile AR products implemented with specific hardware at a high cost, the software approaches of AR implementation on mobile platforms(such as smartphones, tablet PC, etc.) are still far from practical use. GPS-based mobile AR systems usually perform poorly due to the inaccurate positioning in the indoor environment. Previous vision-based pose estimation methods need to continuously track predefined markers within a short distance, which greatly degrade user experience. This paper first conducts a comprehensive study of the state-of-the-art AR and localization systems on mobile platforms. Then, we propose an effective indoor mobile AR framework. In the framework, a fusional localization method and a new pose estimation implementation are developed to increase the overall matching rate and thus improving AR display accuracy. Experiments show that our framework has higher performance than approaches purely based on images or Wi-Fi signals. We achieve low average error distances (0.61-0.81m) and accurate matching rates (77%-82%) when the average sampling grid length is set to 0.5m.
- Abstract(参考訳): 情報を提示する新しい方法として、拡張現実(AR)は、直接的かつ直感的に物理的な世界と対話することを可能にする。
特定のハードウェアで高コストで実装されるモバイルAR製品はいくつかあるが、モバイルプラットフォーム(スマートフォン、タブレットPCなど)におけるAR実装のソフトウェアアプローチはまだ実用的ではない。
GPSベースのモバイルARシステムは、通常、屋内環境における不正確な位置決めのため、性能が良くない。
従来の視覚に基づくポーズ推定手法では、短時間で事前に定義されたマーカーを継続的に追跡する必要があるため、ユーザエクスペリエンスは大幅に低下する。
本稿ではまず,モバイルプラットフォーム上での最先端ARとローカライゼーションシステムについて包括的に研究する。
そこで本研究では,効果的な屋内移動型ARフレームワークを提案する。
本フレームワークでは,統合的ローカライズ法と新しいポーズ推定法を開発し,全体のマッチング率を高め,AR表示精度を向上させる。
実験により,我々のフレームワークは,画像やWi-Fi信号に基づくアプローチよりも高い性能を示した。
平均サンプリンググリッド長が0.5mに設定された場合,低い平均誤差距離 (0.61-0.81m) と正確な一致率 (77%-82%) を達成する。
関連論文リスト
- MobileARLoc: On-device Robust Absolute Localisation for Pervasive
Markerless Mobile AR [2.856126556871729]
本稿では,大規模マーカーレスモバイルARのための新しいフレームワークであるMobileARLocを紹介する。
MobileARLocは絶対ポーズ回帰器(APR)とローカルVIOトラッキングシステムを組み合わせる。
我々は,MobileARLocが基盤となるAPRと比較して誤差を半減し,デバイス上での高速(80,ms)の推論速度を実現することを示す。
論文 参考訳(メタデータ) (2024-01-21T14:48:38Z) - Robust Localization with Visual-Inertial Odometry Constraints for
Markerless Mobile AR [2.856126556871729]
本稿では、絶対的なポーズ回帰器とローカルなVIOトラッキングシステムを組み合わせた、マーカーレスモバイルARのための新しいフレームワークであるVIO-APRを紹介する。
VIO-APRはVIOを用いてAPRとAPRの信頼性を評価し、VIOドリフトの識別と補償を行う。
私たちは、その能力を実証するためにUnityを使用してモバイルARアプリケーションにVIO-APRを実装します。
論文 参考訳(メタデータ) (2023-08-10T07:21:35Z) - A Flexible-Frame-Rate Vision-Aided Inertial Object Tracking System for
Mobile Devices [3.4836209951879957]
本稿では,モバイルデバイス用フレキシブルフレームレートオブジェクトポーズ推定とトラッキングシステムを提案する。
高速トラッキングのためにクライアント側で慣性計測ユニット(IMU)ポーズ伝搬を行い、サーバ側でRGB画像ベースの3Dポーズ推定を行う。
我々のシステムは120FPSまでのフレキシブルフレームレートをサポートし、ローエンドデバイス上での高精度かつリアルタイムなトラッキングを保証する。
論文 参考訳(メタデータ) (2022-10-22T15:26:50Z) - LaMAR: Benchmarking Localization and Mapping for Augmented Reality [80.23361950062302]
異種ARデバイスでキャプチャされたリアルな軌跡とセンサストリームを共登録する,包括的キャプチャとGTパイプラインを備えた新しいベンチマークであるLaMARを紹介する。
私たちは、ヘッドマウントとハンドヘルドARデバイスで記録された多様な大規模シーンのベンチマークデータセットを公開します。
論文 参考訳(メタデータ) (2022-10-19T17:58:17Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: 基地局(BSs)からの受信信号強度(RSS)のみに基づく深層学習手法
提案手法では,BSsからのRSSを,クラウド上に存在する可能性のある中央処理ユニット(CPU)にローカライズする。
推定されたBSのパスロスラジオマップを用いて、LocUNetは最先端の精度でユーザをローカライズし、無線マップの不正確性に対して高い堅牢性を享受する。
論文 参考訳(メタデータ) (2022-02-01T20:27:46Z) - Improving Robustness and Accuracy via Relative Information Encoding in
3D Human Pose Estimation [59.94032196768748]
位置および時間的拡張表現を出力する相対情報符号化法を提案する。
提案手法は2つの公開データセット上で最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-07-29T14:12:19Z) - Real-time Outdoor Localization Using Radio Maps: A Deep Learning
Approach [59.17191114000146]
LocUNet: ローカライゼーションタスクのための畳み込み、エンドツーエンドのトレーニングニューラルネットワーク(NN)。
我々は,LocUNetがユーザを最先端の精度でローカライズし,無線マップ推定における不正確性が高いことを示す。
論文 参考訳(メタデータ) (2021-06-23T17:27:04Z) - Object Detection in the Context of Mobile Augmented Reality [16.49070406578342]
本稿では,VIOから得られる幾何学的情報とオブジェクト検出器からの意味情報を組み合わせて,モバイルデバイス上での物体検出性能を向上させる手法を提案する。
提案手法は,(1)画像配向補正法,(2)スケールベースフィルタリング法,(3)オンライン意味地図の3つの構成要素を含む。
その結果,汎用物体検出器の精度をデータセット上で12%向上できることがわかった。
論文 参考訳(メタデータ) (2020-08-15T05:15:00Z) - Zero-Shot Multi-View Indoor Localization via Graph Location Networks [66.05980368549928]
屋内ローカライゼーションは、位置ベースアプリケーションにおける基本的な問題である。
本稿では,インフラストラクチャフリーで多視点画像に基づく屋内ローカライゼーションを実現するために,新しいニューラルネットワークアーキテクチャであるGraph Location Networks(GLN)を提案する。
GLNは、メッセージパッシングネットワークを通じて画像から抽出されたロバストな位置表現に基づいて位置予測を行う。
新たにゼロショット屋内ローカライズ設定を導入し,提案したGLNを専用ゼロショットバージョンに拡張することで,その課題に対処する。
論文 参考訳(メタデータ) (2020-08-06T07:36:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。