FTA-FTL: A Fine-Tuned Aggregation Federated Transfer Learning Scheme for Lithology Microscopic Image Classification
- URL: http://arxiv.org/abs/2501.03349v1
- Date: Mon, 06 Jan 2025 19:32:14 GMT
- Title: FTA-FTL: A Fine-Tuned Aggregation Federated Transfer Learning Scheme for Lithology Microscopic Image Classification
- Authors: Keyvan RahimiZadeh, Ahmad Taheri, Jan Baumbach, Esmael Makarian, Abbas Dehghani, Bahman Ravaei, Bahman Javadi, Amin Beheshti,
- Abstract summary: This study involves two phases; the first is to conduct Lithology microscopic image classification on a small dataset using transfer learning.
In the second phase, we formulated the classification task to a Federated Transfer Learning scheme and proposed a Fine-Tuned Aggregation strategy for Federated Learning (FTA-FTL)
The results are in excellent agreement and confirm the efficiency of the proposed scheme, and show that the proposed FTA-FTL algorithm is capable enough to achieve approximately the same results obtained by the centralized implementation for Lithology microscopic images classification task.
- Score: 4.245694283697248
- License:
- Abstract: Lithology discrimination is a crucial activity in characterizing oil reservoirs, and processing lithology microscopic images is an essential technique for investigating fossils and minerals and geological assessment of shale oil exploration. In this way, Deep Learning (DL) technique is a powerful approach for building robust classifier models. However, there is still a considerable challenge to collect and produce a large dataset. Transfer-learning and data augmentation techniques have emerged as popular approaches to tackle this problem. Furthermore, due to different reasons, especially data privacy, individuals, organizations, and industry companies often are not willing to share their sensitive data and information. Federated Learning (FL) has emerged to train a highly accurate central model across multiple decentralized edge servers without transferring sensitive data, preserving sensitive data, and enhancing security. This study involves two phases; the first phase is to conduct Lithology microscopic image classification on a small dataset using transfer learning. In doing so, various pre-trained DL model architectures are comprehensively compared for the classification task. In the second phase, we formulated the classification task to a Federated Transfer Learning (FTL) scheme and proposed a Fine-Tuned Aggregation strategy for Federated Learning (FTA-FTL). In order to perform a comprehensive experimental study, several metrics such as accuracy, f1 score, precision, specificity, sensitivity (recall), and confusion matrix are taken into account. The results are in excellent agreement and confirm the efficiency of the proposed scheme, and show that the proposed FTA-FTL algorithm is capable enough to achieve approximately the same results obtained by the centralized implementation for Lithology microscopic images classification task.
Related papers
- Leveraging Semi-Supervised Learning to Enhance Data Mining for Image Classification under Limited Labeled Data [35.431340001608476]
Traditional data mining methods are inadequate when faced with large-scale, high-dimensional and complex data.
This study introduces semi-supervised learning methods, aiming to improve the algorithm's ability to utilize unlabeled data.
Specifically, we adopt a self-training method and combine it with a convolutional neural network (CNN) for image feature extraction and classification.
arXiv Detail & Related papers (2024-11-27T18:59:50Z) - Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained Ship Classification [59.99976102069976]
Fine-grained ship classification in remote sensing (RS-FGSC) poses a significant challenge due to the high similarity between classes and the limited availability of labeled data.
Recent advancements in large pre-trained Vision-Language Models (VLMs) have demonstrated impressive capabilities in few-shot or zero-shot learning.
This study delves into harnessing the potential of VLMs to enhance classification accuracy for unseen ship categories.
arXiv Detail & Related papers (2024-03-13T05:48:58Z) - Scalable manifold learning by uniform landmark sampling and constrained
locally linear embedding [0.6144680854063939]
We propose a scalable manifold learning (scML) method that can manipulate large-scale and high-dimensional data in an efficient manner.
We empirically validated the effectiveness of scML on synthetic datasets and real-world benchmarks of different types.
scML scales well with increasing data sizes and embedding dimensions, and exhibits promising performance in preserving the global structure.
arXiv Detail & Related papers (2024-01-02T08:43:06Z) - SSL-SoilNet: A Hybrid Transformer-based Framework with Self-Supervised Learning for Large-scale Soil Organic Carbon Prediction [2.554658234030785]
This study introduces a novel approach that aims to learn the geographical link between multimodal features via self-supervised contrastive learning.
The proposed approach has undergone rigorous testing on two distinct large-scale datasets.
arXiv Detail & Related papers (2023-08-07T13:44:44Z) - Data-Efficient Learning via Minimizing Hyperspherical Energy [48.47217827782576]
This paper considers the problem of data-efficient learning from scratch using a small amount of representative data.
We propose a MHE-based active learning (MHEAL) algorithm, and provide comprehensive theoretical guarantees for MHEAL.
arXiv Detail & Related papers (2022-06-30T11:39:12Z) - A SPA-based Manifold Learning Framework for Motor Imagery EEG Data
Classification [2.4727719996518487]
This paper proposes a manifold learning framework to classify two types of EEG data from motor imagery (MI) tasks.
For feature extraction, it is implemented by Common Spatial Pattern (CSP) from the preprocessed EEG signals.
In the neighborhoods of the features for classification, the local approximation to the support of the data is obtained, and then the features are assigned to the classes with the closest support.
arXiv Detail & Related papers (2021-07-30T06:18:05Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
This paper proposes a novel federated learning approach for deep learning architectures in the medical domain.
Local-statistic batch normalization (BN) layers are introduced, resulting in collaboratively-trained, yet center-specific models.
We benchmark the proposed method on the classification of tumorous histopathology image patches extracted from the Camelyon16 and Camelyon17 datasets.
arXiv Detail & Related papers (2020-08-17T15:49:30Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
Multilinear Compressive Learning (MCL) framework combines Multilinear Compressive Sensing and Machine Learning into an end-to-end system.
Key idea behind MCL is the assumption of the existence of a tensor subspace which can capture the essential features from the signal for the downstream learning task.
In this paper, we propose a novel solution to address both of the aforementioned requirements, i.e., How to find those tensor subspaces in which the signals of interest are highly separable?
arXiv Detail & Related papers (2020-02-17T19:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.