License Plate Images Generation with Diffusion Models
- URL: http://arxiv.org/abs/2501.03374v1
- Date: Mon, 06 Jan 2025 20:22:18 GMT
- Title: License Plate Images Generation with Diffusion Models
- Authors: Mariia Shpir, Nadiya Shvai, Amir Nakib,
- Abstract summary: We propose to synthesize realistic license plates (LPs) using diffusion models inspired by video generation.
We have prepared a synthetic dataset consisting of 10,000 LP images, publicly available at https://zenodo.org/doi/10.528/zenodo.13342102.
- Score: 4.151073288078749
- License:
- Abstract: Despite the evident practical importance of license plate recognition (LPR), corresponding research is limited by the volume of publicly available datasets due to privacy regulations such as the General Data Protection Regulation (GDPR). To address this challenge, synthetic data generation has emerged as a promising approach. In this paper, we propose to synthesize realistic license plates (LPs) using diffusion models, inspired by recent advances in image and video generation. In our experiments a diffusion model was successfully trained on a Ukrainian LP dataset, and 1000 synthetic images were generated for detailed analysis. Through manual classification and annotation of the generated images, we performed a thorough study of the model output, such as success rate, character distributions, and type of failures. Our contributions include experimental validation of the efficacy of diffusion models for LP synthesis, along with insights into the characteristics of the generated data. Furthermore, we have prepared a synthetic dataset consisting of 10,000 LP images, publicly available at https://zenodo.org/doi/10.5281/zenodo.13342102. Conducted experiments empirically confirm the usefulness of synthetic data for the LPR task. Despite the initial performance gap between the model trained with real and synthetic data, the expansion of the training data set with pseudolabeled synthetic data leads to an improvement in LPR accuracy by 3% compared to baseline.
Related papers
- Leveraging Programmatically Generated Synthetic Data for Differentially Private Diffusion Training [4.815212947276105]
Programmatically generated synthetic data has been used in differential private training for classification to avoid privacy leakage.
The model trained with synthetic data generates unrealistic random images, raising challenges to adapt synthetic data for generative models.
We propose DPSynGen, which leverages generated synthetic data in diffusion models to address this challenge.
arXiv Detail & Related papers (2024-12-13T04:22:23Z) - Can Medical Vision-Language Pre-training Succeed with Purely Synthetic Data? [8.775988650381397]
Training medical vision-language pre-training models requires datasets with paired, high-quality image-text data.
Recent advancements in Large Language Models have made it possible to generate large-scale synthetic image-text pairs.
We propose an automated pipeline to build a diverse, high-quality synthetic dataset.
arXiv Detail & Related papers (2024-10-17T13:11:07Z) - DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
We propose a framework for synthesizing classification datasets that more faithfully represents the real data distribution.
DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model.
We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets.
arXiv Detail & Related papers (2024-07-15T17:10:31Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Learning from Synthetic Data for Visual Grounding [55.21937116752679]
We show that SynGround can improve the localization capabilities of off-the-shelf vision-and-language models.
Data generated with SynGround improves the pointing game accuracy of a pretrained ALBEF and BLIP models by 4.81% and 17.11% absolute percentage points, respectively.
arXiv Detail & Related papers (2024-03-20T17:59:43Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - On the Limitation of Diffusion Models for Synthesizing Training Datasets [5.384630221560811]
This paper investigates the gap between synthetic and real samples by analyzing the synthetic samples reconstructed from real samples through the diffusion and reverse process.
We found that the synthetic datasets degrade classification performance over real datasets even when using state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-11-22T01:42:23Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
Training a model on purely synthetic images for downstream image processing tasks results in an undesired performance drop compared to training on real data.
We propose a new taxonomy to describe factors contributing to this commonly observed phenomenon and investigate it on the popular CIFAR-10 dataset.
Our method outperforms baselines on downstream classification tasks both in case of training on synthetic only (Synthetic-to-Real) and training on a mix of real and synthetic data.
arXiv Detail & Related papers (2023-11-07T12:57:58Z) - Differentially Private Diffusion Models Generate Useful Synthetic Images [53.94025967603649]
Recent studies have found that, by default, the outputs of some diffusion models do not preserve training data privacy.
By privately fine-tuning ImageNet pre-trained diffusion models with more than 80M parameters, we obtain SOTA results on CIFAR-10 and Camelyon17.
Our results demonstrate that diffusion models fine-tuned with differential privacy can produce useful and provably private synthetic data.
arXiv Detail & Related papers (2023-02-27T15:02:04Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Synthetic Data for Model Selection [2.4499092754102874]
We show that synthetic data can be beneficial for model selection.
We introduce a novel method to calibrate the synthetic error estimation to fit that of the real domain.
arXiv Detail & Related papers (2021-05-03T09:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.