論文の概要: A Fair Federated Learning Framework With Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2205.13415v1
- Date: Thu, 26 May 2022 15:10:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-27 14:21:51.692389
- Title: A Fair Federated Learning Framework With Reinforcement Learning
- Title(参考訳): 強化学習を伴う公正なフェデレーション学習フレームワーク
- Authors: Yaqi Sun, Shijing Si, Jianzong Wang, Yuhan Dong, Zhitao Zhu, Jing Xiao
- Abstract要約: フェデレートラーニング(Federated Learning, FL)は、多くのクライアントが中央サーバの協調の下でモデルを協調的にトレーニングするパラダイムである。
本稿では,クライアントにアグリゲーション重み付けを割り当てるポリシを自動的に学習するPG-FFLという強化学習フレームワークを提案する。
フレームワークの有効性を検証するため、多様なデータセットに対して広範な実験を行う。
- 参考スコア(独自算出の注目度): 23.675056844328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a paradigm where many clients collaboratively
train a model under the coordination of a central server, while keeping the
training data locally stored. However, heterogeneous data distributions over
different clients remain a challenge to mainstream FL algorithms, which may
cause slow convergence, overall performance degradation and unfairness of
performance across clients. To address these problems, in this study we propose
a reinforcement learning framework, called PG-FFL, which automatically learns a
policy to assign aggregation weights to clients. Additionally, we propose to
utilize Gini coefficient as the measure of fairness for FL. More importantly,
we apply the Gini coefficient and validation accuracy of clients in each
communication round to construct a reward function for the reinforcement
learning. Our PG-FFL is also compatible to many existing FL algorithms. We
conduct extensive experiments over diverse datasets to verify the effectiveness
of our framework. The experimental results show that our framework can
outperform baseline methods in terms of overall performance, fairness and
convergence speed.
- Abstract(参考訳): フェデレートラーニング(FL)は、多くのクライアントが、トレーニングデータをローカルに保存しつつ、中央サーバの調整の下でモデルを協調的にトレーニングするパラダイムである。
しかし、異なるクライアント上の異種データ分散は主流のflアルゴリズムにとって依然として課題であり、低収束、全体的なパフォーマンス低下、クライアント間のパフォーマンスの不公平性を引き起こす可能性がある。
そこで本研究では,クライアントにアグリゲーション重み付けを割り当てるポリシーを自動的に学習するPG-FFLという強化学習フレームワークを提案する。
さらに, FLの公平性の尺度としてジニ係数を用いることを提案する。
さらに,強化学習のための報酬関数を構築するために,各コミュニケーションラウンドのクライアントのgini係数と検証精度を適用した。
我々のPG-FFLは既存の多くのFLアルゴリズムとも互換性がある。
フレームワークの有効性を検証するため、多様なデータセットに対して広範な実験を行う。
実験結果から,本フレームワークは全体の性能,公平性,収束速度において,ベースライン手法より優れていることが示された。
関連論文リスト
- Embracing Federated Learning: Enabling Weak Client Participation via Partial Model Training [21.89214794178211]
フェデレートラーニング(FL)では、クライアントは完全なモデルをトレーニングしたり、メモリ空間に保持することができない弱いデバイスを持っているかもしれない。
我々は、すべての利用可能なクライアントが分散トレーニングに参加することを可能にする、一般的なFLフレームワークであるEnbracingFLを提案する。
実験により,FL の導入は,すべてのクライアントが強力であるように常に高い精度を達成し,最先端の幅削減手法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-21T13:19:29Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Achieving Linear Speedup in Asynchronous Federated Learning with
Heterogeneous Clients [30.135431295658343]
フェデレートラーニング(FL)は、異なるクライアントにローカルに保存されているデータを交換したり転送したりすることなく、共通のグローバルモデルを学ぶことを目的としている。
本稿では,DeFedAvgという,効率的な連邦学習(AFL)フレームワークを提案する。
DeFedAvgは、望まれる線形スピードアップ特性を達成する最初のAFLアルゴリズムであり、高いスケーラビリティを示している。
論文 参考訳(メタデータ) (2024-02-17T05:22:46Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Federated Learning Can Find Friends That Are Advantageous [14.993730469216546]
フェデレートラーニング(FL)では、クライアントデータの分散の性質と均一性は、機会と課題の両方を示します。
本稿では,FLトレーニングに参加するクライアントに対して適応的なアグリゲーション重みを割り当てるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-07T17:46:37Z) - Dynamic Fair Federated Learning Based on Reinforcement Learning [19.033986978896074]
フェデレートラーニングは、ローカルデータサンプルを共有することなく、デバイスのグループ間でグローバルモデルの協調トレーニングと最適化を可能にする。
DQFFLと呼ばれる強化学習を伴う動的qフェアネスフェデレーション学習アルゴリズムを提案する。
我々のDQFFLは、全体的な性能、公平性、収束速度において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-11-02T03:05:40Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するフェデレーション学習のためのゲーム理論フレームワークFL GAMESを提案する。
論文 参考訳(メタデータ) (2022-10-31T22:59:03Z) - FL Games: A federated learning framework for distribution shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するためのゲーム理論のフレームワークであるFL Gamesを提案する。
論文 参考訳(メタデータ) (2022-05-23T07:51:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。