Low-Order Flow Reconstruction and Uncertainty Quantification in Disturbed Aerodynamics Using Sparse Pressure Measurements
- URL: http://arxiv.org/abs/2501.03406v1
- Date: Mon, 06 Jan 2025 22:02:06 GMT
- Title: Low-Order Flow Reconstruction and Uncertainty Quantification in Disturbed Aerodynamics Using Sparse Pressure Measurements
- Authors: Hanieh Mousavi, Jeff D. Eldredge,
- Abstract summary: This paper presents a novel machine-learning framework for reconstructing low-order gustencounter flow field and lift coefficients from sparse, noisy surface pressure measurements.
Our study thoroughly investigates the time-varying response of sensors to gust-air interactions, uncovering valuable insights into optimal sensor placement.
- Score: 0.0
- License:
- Abstract: This paper presents a novel machine-learning framework for reconstructing low-order gust-encounter flow field and lift coefficients from sparse, noisy surface pressure measurements. Our study thoroughly investigates the time-varying response of sensors to gust-airfoil interactions, uncovering valuable insights into optimal sensor placement. To address uncertainties in deep learning predictions, we implement probabilistic regression strategies to model both epistemic and aleatoric uncertainties. Epistemic uncertainty, reflecting the model's confidence in its predictions, is modeled using Monte Carlo dropout, as an approximation to the variational inference in the Bayesian framework, treating the neural network as a stochastic entity. On the other hand, aleatoric uncertainty, arising from noisy input measurements, is captured via learned statistical parameters, which propagates measurement noise through the network into the final predictions. Our results showcase the efficacy of this dual uncertainty quantification strategy in accurately predicting aerodynamic behavior under extreme conditions while maintaining computational efficiency, underscoring its potential to improve online sensor-based flow estimation in real-world applications.
Related papers
- Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
for Earth System Science Applications [0.32302664881848275]
Evidential deep learning is a technique that extends parametric deep learning to higher-order distributions.
This study compares the uncertainty derived from evidential neural networks to those obtained from ensembles.
We show evidential deep learning models attaining predictive accuracy rivaling standard methods, while robustly quantifying both sources of uncertainty.
arXiv Detail & Related papers (2023-09-22T23:04:51Z) - Conformalized Multimodal Uncertainty Regression and Reasoning [0.9205582989348333]
This paper introduces a lightweight uncertainty estimator capable of predicting multimodal (disjoint) uncertainty bounds.
We specifically discuss its application for visual odometry (VO), where environmental features such as flying domain symmetries can result in multimodal uncertainties.
arXiv Detail & Related papers (2023-09-20T02:40:59Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
Supervised masking approaches in the time-frequency domain aim to employ deep neural networks to estimate a multiplicative mask to extract clean speech.
This leads to a single estimate for each input without any guarantees or measures of reliability.
We study the benefits of modeling uncertainty in clean speech estimation.
arXiv Detail & Related papers (2023-05-15T15:55:12Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
We propose a novel approach for uncertainty quantification via ensembles, called Random Activation Functions (RAFs) Ensemble.
RAFs Ensemble outperforms state-of-the-art ensemble uncertainty quantification methods on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-02-28T13:17:56Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
Existing methods can quantify the error in the target estimation, but they tend to underestimate it.
We propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting.
We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.
arXiv Detail & Related papers (2020-11-03T12:11:27Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.