Optimizing Value of Learning in Task-Oriented Federated Meta-Learning Systems
- URL: http://arxiv.org/abs/2501.03448v1
- Date: Tue, 07 Jan 2025 00:30:31 GMT
- Title: Optimizing Value of Learning in Task-Oriented Federated Meta-Learning Systems
- Authors: Bibo Wu, Fang Fang, Xianbin Wang,
- Abstract summary: A novel metric, metric value of learning (VoL) is introduced to assess the individual training needs across devices.
A task-level weight (TLW) is defined based on task-level considerations and fairness of FML training.
- Score: 10.332182237773818
- License:
- Abstract: Federated Learning (FL) has gained significant attention in recent years due to its distributed nature and privacy preserving benefits. However, a key limitation of conventional FL is that it learns and distributes a common global model to all participants, which fails to provide customized solutions for diverse task requirements. Federated meta-learning (FML) offers a promising solution to this issue by enabling devices to finetune local models after receiving a shared meta-model from the server. In this paper, we propose a task-oriented FML framework over non-orthogonal multiple access (NOMA) networks. A novel metric, termed value of learning (VoL), is introduced to assess the individual training needs across devices. Moreover, a task-level weight (TLW) metric is defined based on task requirements and fairness considerations, guiding the prioritization of edge devices during FML training. The formulated problem, to maximize the sum of TLW-based VoL across devices, forms a non-convex mixed-integer non-linear programming (MINLP) challenge, addressed here using a parameterized deep Q-network (PDQN) algorithm to handle both discrete and continuous variables. Simulation results demonstrate that our approach significantly outperforms baseline schemes, underscoring the advantages of the proposed framework.
Related papers
- FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences [2.519319150166215]
Federated Learning (FL) is a distributed machine learning strategy developed for settings where training data is owned by distributed devices and cannot be shared.
The application of FL to real-world settings brings additional challenges associated with heterogeneity between participants.
We propose FedPref, a first algorithm designed to facilitate personalised FL in this setting.
arXiv Detail & Related papers (2025-01-23T12:12:59Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.
Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Prioritizing Modalities: Flexible Importance Scheduling in Federated Multimodal Learning [5.421492821020181]
Federated Learning (FL) is a distributed machine learning approach that enables devices to collaboratively train models without sharing their local data.
Applying FL to real-world data presents challenges, particularly as most existing FL research focuses on unimodal data.
We propose FlexMod, a novel approach to enhance computational efficiency in MFL by adaptively allocating training resources for each modality encoder.
arXiv Detail & Related papers (2024-08-13T01:14:27Z) - AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks [15.195798715517315]
Split federated learning (SFL) is a promising solution by of floading the primary training workload to a server via model partitioning.
We propose AdaptSFL, a novel resource-adaptive SFL framework, to expedite SFL under resource-constrained edge computing systems.
arXiv Detail & Related papers (2024-03-19T19:05:24Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Training Latency Minimization for Model-Splitting Allowed Federated Edge
Learning [16.8717239856441]
We propose a model-splitting allowed FL (SFL) framework to alleviate the shortage of computing power faced by clients in training deep neural networks (DNNs) using federated learning (FL)
Under the synchronized global update setting, the latency to complete a round of global training is determined by the maximum latency for the clients to complete a local training session.
To solve this mixed integer nonlinear programming problem, we first propose a regression method to fit the quantitative-relationship between the cut-layer and other parameters of an AI-model, and thus, transform the TLMP into a continuous problem.
arXiv Detail & Related papers (2023-07-21T12:26:42Z) - When Computing Power Network Meets Distributed Machine Learning: An
Efficient Federated Split Learning Framework [6.871107511111629]
CPN-FedSL is a Federated Split Learning (FedSL) framework over Computing Power Network (CPN)
We build a dedicated model to capture the basic settings and learning characteristics (e.g., latency, flow, convergence)
arXiv Detail & Related papers (2023-05-22T12:36:52Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.