Enhanced Tuberculosis Bacilli Detection using Attention-Residual U-Net and Ensemble Classification
- URL: http://arxiv.org/abs/2501.03539v1
- Date: Tue, 07 Jan 2025 05:21:13 GMT
- Title: Enhanced Tuberculosis Bacilli Detection using Attention-Residual U-Net and Ensemble Classification
- Authors: Greeshma K, Vishnukumar S,
- Abstract summary: Tuberculosis, caused by Mycobacterium tuberculosis, remains a critical global health issue, necessitating timely diagnosis and treatment.
Current methods for detecting tuberculosis bacilli from bright field microscopic sputum smear images suffer from low automation, inadequate segmentation performance, and limited classification accuracy.
This paper proposes an efficient hybrid approach that combines deep learning for segmentation and an ensemble model for classification.
- Score: 0.0
- License:
- Abstract: Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a critical global health issue, necessitating timely diagnosis and treatment. Current methods for detecting tuberculosis bacilli from bright field microscopic sputum smear images suffer from low automation, inadequate segmentation performance, and limited classification accuracy. This paper proposes an efficient hybrid approach that combines deep learning for segmentation and an ensemble model for classification. An enhanced U-Net model incorporating attention blocks and residual connections is introduced to precisely segment microscopic sputum smear images, facilitating the extraction of Regions of Interest (ROIs). These ROIs are subsequently classified using an ensemble classifier comprising Support Vector Machine (SVM), Random Forest, and Extreme Gradient Boost (XGBoost), resulting in an accurate identification of bacilli within the images. Experiments conducted on a newly created dataset, along with public datasets, demonstrate that the proposed model achieves superior segmentation performance, higher classification accuracy, and enhanced automation compared to existing methods.
Related papers
- Efficient and Accurate Tuberculosis Diagnosis: Attention Residual U-Net and Vision Transformer Based Detection Framework [0.0]
Tuberculosis (TB) continues to be a major global health threat despite being preventable and curable.
This paper proposes a twostage deep learning methodology for tuberculosis bacilli detection, comprising bacilli segmentation followed by classification.
In the initial phase, an advanced U-Net model employing attention blocks and residual connections is proposed to segment microscopic sputum smear images, enabling the extraction of Regions of Interest (ROIs)
The extracted ROIs are then classified using a Vision Transformer, which we specifically customized as TBViT to enhance the precise detection of bacilli within the images.
arXiv Detail & Related papers (2025-01-07T05:17:43Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning [1.4053129774629076]
This study presents an unsupervised domain adaptation method aimed at autonomously generating image masks outlining regions of interest (ROIs) for differentiating breast lesions in breast ultrasound (US) imaging.
Our semi-supervised learning approach utilizes a primitive model trained on a small public breast US dataset with true annotations.
This model is then iteratively refined for the domain adaptation task, generating pseudo-masks for our private, unannotated breast US dataset.
arXiv Detail & Related papers (2024-04-18T18:25:00Z) - A Novel Dataset and a Deep Learning Method for Mitosis Nuclei
Segmentation and Classification [10.960222475663006]
Mitosis nuclei count is one of the important indicators for the pathological diagnosis of breast cancer.
We propose a two-stage mitosis segmentation and classification method, named SCMitosis.
The proposed model is verified on the ICPR 2012 dataset, and the highest F-score value of 0.8687 is obtained.
arXiv Detail & Related papers (2022-12-27T08:12:42Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for
Cervical Cytology Image Classification [1.6986898305640261]
We propose a fully automated computer-aided diagnosis tool for classifying single-cell and slide images of cervical cancer.
We use the Sugeno Fuzzy Integral to ensemble the decision scores from three popular deep learning models, namely, Inception v3, DenseNet-161 and ResNet-34.
arXiv Detail & Related papers (2021-08-21T08:41:41Z) - Weakly-Supervised Universal Lesion Segmentation with Regional Level Set
Loss [16.80758525711538]
We present a novel weakly-supervised universal lesion segmentation method based on the High-Resolution Network (HRNet)
AHRNet provides advanced high-resolution deep image features by involving a decoder, dual-attention and scale attention mechanisms.
Our method achieves the best performance on the publicly large-scale DeepLesion dataset and a hold-out test set.
arXiv Detail & Related papers (2021-05-03T23:33:37Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.