論文の概要: Beyond Factual Accuracy: Evaluating Coverage of Diverse Factual Information in Long-form Text Generation
- arxiv url: http://arxiv.org/abs/2501.03545v2
- Date: Fri, 17 Jan 2025 17:47:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:57:56.223685
- Title: Beyond Factual Accuracy: Evaluating Coverage of Diverse Factual Information in Long-form Text Generation
- Title(参考訳): ファクト精度を超えて:長文テキスト生成における異種ファクト情報のカバレッジ評価
- Authors: Chris Samarinas, Alexander Krubner, Alireza Salemi, Youngwoo Kim, Hamed Zamani,
- Abstract要約: ICATは、長文テキスト生成における多様な事実情報のカバレッジを測定するための評価フレームワークである。
原子の事実的クレームと出力で提示されるであろう様々な側面のアライメントを計算する。
私たちのフレームワークは、多様性とカバレッジの解釈可能かつきめ細かな分析を提供します。
- 参考スコア(独自算出の注目度): 56.82274763974443
- License:
- Abstract: This paper presents ICAT, an evaluation framework for measuring coverage of diverse factual information in long-form text generation. ICAT breaks down a long output text into a list of atomic claims and not only verifies each claim through retrieval from a (reliable) knowledge source, but also computes the alignment between the atomic factual claims and various aspects expected to be presented in the output. We study three implementations of the ICAT framework, each with a different assumption on the availability of aspects and alignment method. By adopting data from the diversification task in the TREC Web Track and the ClueWeb corpus, we evaluate the ICAT framework. We demonstrate strong correlation with human judgments and provide comprehensive evaluation across multiple state-of-the-art LLMs. Our framework further offers interpretable and fine-grained analysis of diversity and coverage. Its modular design allows for easy adaptation to different domains and datasets, making it a valuable tool for evaluating the qualitative aspects of long-form responses produced by LLMs.
- Abstract(参考訳): 本稿では、長文テキスト生成における多様な事実情報のカバレッジを測定するための評価フレームワークICATを提案する。
ICATは、長い出力テキストをアトミックなクレームのリストに分解し、(信頼性の高い)知識ソースからの検索を通じて各クレームを検証するだけでなく、アトミックな事実的クレームと出力に提示されるであろう様々な側面のアライメントを計算する。
ICATフレームワークの3つの実装について検討し,アスペクトの可用性とアライメント法について,それぞれ異なる仮定で検討した。
TREC Web Track と ClueWeb コーパスにおける多様化タスクのデータを活用することで,ICAT フレームワークの評価を行う。
我々は,人間の判断と強い相関を示し,複数の最先端LCMに対して包括的評価を行う。
我々のフレームワークは、多様性とカバレッジの解釈可能かつきめ細かな分析を提供する。
モジュール設計により、異なるドメインやデータセットへの適応が容易になり、LLMが生成する長文応答の質的な側面を評価する貴重なツールとなる。
関連論文リスト
- CATER: Leveraging LLM to Pioneer a Multidimensional, Reference-Independent Paradigm in Translation Quality Evaluation [0.0]
Comprehensive AI-assisted Translation Edit Ratio (CATER)は、機械翻訳(MT)の品質を評価するための新しいフレームワークである。
大きな言語モデル(LLM)は、慎重に設計されたプロンプトベースのプロトコルによって使用される。
論文 参考訳(メタデータ) (2024-12-15T17:45:34Z) - Benchmarking Large Language Models for Conversational Question Answering in Multi-instructional Documents [61.41316121093604]
対話型質問応答(CQA)の文脈における大規模言語モデル(LLM)を評価するための新しいベンチマークであるInsCoQAを提案する。
InsCoQAは、百科事典スタイルの教育内容から派生したもので、複数の文書から手続き的ガイダンスを抽出し、解釈し、正確に要約する能力のモデルを評価する。
また,LLM支援型評価器であるInsEvalを提案する。
論文 参考訳(メタデータ) (2024-10-01T09:10:00Z) - Beyond Metrics: A Critical Analysis of the Variability in Large Language Model Evaluation Frameworks [3.773596042872403]
大規模言語モデル(LLM)は進化を続けており、堅牢で標準化された評価ベンチマークの必要性が最重要である。
さまざまなフレームワークがこの分野への注目すべき貢献として現れ、包括的な評価テストとベンチマークを提供している。
本稿では,これらの評価手法の探索と批判的分析を行い,その強度,限界,および自然言語処理における最先端の進展に対する影響について述べる。
論文 参考訳(メタデータ) (2024-07-29T03:37:14Z) - SPOR: A Comprehensive and Practical Evaluation Method for Compositional Generalization in Data-to-Text Generation [21.68354181391989]
本研究では,データ・テキスト生成における合成一般化のための総合的・実践的な評価手法であるSPORを提案する。
2つの異なるデータセット上でSPORを実証し、LLMを含む既存の言語モデルを評価する。
論文 参考訳(メタデータ) (2024-05-17T09:25:30Z) - MATEval: A Multi-Agent Discussion Framework for Advancing Open-Ended Text Evaluation [22.19073789961769]
生成型大規模言語モデル(LLM)は注目に値するが、これらのモデルによって生成されたテキストの品質は、しばしば永続的な問題を示す。
MATEval: "Multi-Agent Text Evaluation framework"を提案する。
本フレームワークは,評価プロセスの深度と広さを高めるために,自己回帰と整合性戦略とフィードバック機構を取り入れている。
論文 参考訳(メタデータ) (2024-03-28T10:41:47Z) - FENICE: Factuality Evaluation of summarization based on Natural language Inference and Claim Extraction [85.26780391682894]
自然言語推論とクレーム抽出(FENICE)に基づく要約のファクチュアリティ評価を提案する。
FENICEは、ソース文書内の情報と、要約から抽出されたクレームと呼ばれる一連の原子的事実との間のNLIベースのアライメントを利用する。
我々の測定基準は、事実性評価のためのデファクトベンチマークであるAGGREFACTに関する新しい技術状況を設定する。
論文 参考訳(メタデータ) (2024-03-04T17:57:18Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text Summaries [56.31117605097345]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
本稿では,テキスト内学習を用いた多次元評価器として,大規模言語モデルの有効性について検討する。
実験の結果,テキスト要約作業において,文脈内学習に基づく評価手法が学習評価フレームワークと競合していることが判明した。
次に、テキスト内サンプルの選択や数などの要因がパフォーマンスに与える影響を分析する。
論文 参考訳(メタデータ) (2023-06-01T23:27:49Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
本稿では,現実性評価指標を評価するメタ評価フレームワークGO FIGUREを紹介する。
10個の実測値のベンチマーク分析により、我々のフレームワークが堅牢で効率的な評価を提供することが明らかとなった。
また、QAメトリクスは、ドメイン間の事実性を測定する標準的なメトリクスよりも一般的に改善されているが、パフォーマンスは、質問を生成する方法に大きく依存していることも明らかにしている。
論文 参考訳(メタデータ) (2020-10-24T08:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。