論文の概要: Beyond Metrics: A Critical Analysis of the Variability in Large Language Model Evaluation Frameworks
- arxiv url: http://arxiv.org/abs/2407.21072v1
- Date: Mon, 29 Jul 2024 03:37:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 19:35:32.264309
- Title: Beyond Metrics: A Critical Analysis of the Variability in Large Language Model Evaluation Frameworks
- Title(参考訳): Beyond Metrics: 大規模言語モデル評価フレームワークにおける変数の批判的分析
- Authors: Marco AF Pimentel, Clément Christophe, Tathagata Raha, Prateek Munjal, Praveen K Kanithi, Shadab Khan,
- Abstract要約: 大規模言語モデル(LLM)は進化を続けており、堅牢で標準化された評価ベンチマークの必要性が最重要である。
さまざまなフレームワークがこの分野への注目すべき貢献として現れ、包括的な評価テストとベンチマークを提供している。
本稿では,これらの評価手法の探索と批判的分析を行い,その強度,限界,および自然言語処理における最先端の進展に対する影響について述べる。
- 参考スコア(独自算出の注目度): 3.773596042872403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) continue to evolve, the need for robust and standardized evaluation benchmarks becomes paramount. Evaluating the performance of these models is a complex challenge that requires careful consideration of various linguistic tasks, model architectures, and benchmarking methodologies. In recent years, various frameworks have emerged as noteworthy contributions to the field, offering comprehensive evaluation tests and benchmarks for assessing the capabilities of LLMs across diverse domains. This paper provides an exploration and critical analysis of some of these evaluation methodologies, shedding light on their strengths, limitations, and impact on advancing the state-of-the-art in natural language processing.
- Abstract(参考訳): 大規模言語モデル(LLM)が進化を続けるにつれ、堅牢で標準化された評価ベンチマークの必要性が最重要となる。
これらのモデルの性能を評価することは、様々な言語的タスク、モデルアーキテクチャ、ベンチマーク手法を慎重に検討する必要がある複雑な課題である。
近年、様々なフレームワークがこの分野への注目すべき貢献として現れており、様々な領域にわたるLSMの能力を評価するための総合的な評価テストとベンチマークを提供している。
本稿では,これらの評価手法の探索と批判的分析を行い,その強度,限界,および自然言語処理における最先端の進展に対する影響について述べる。
関連論文リスト
- A Preliminary Study of Multilingual Code Language Models for Code Generation Task Using Translated Benchmarks [0.0]
コード生成のために構築されたオープンソースの多言語CLMであるPoly-Coderの性能を評価する。
以上の結果から,これらのベンチマークで得られた結果は,トレーニングフェーズで使用する評価指標とよく一致していることがわかった。
これらの初期の洞察は、より包括的な実証研究の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-11-23T06:40:47Z) - A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
MLLM(Multimodal Large Language Models)は、人工知能に大きな進歩をもたらした。
この調査は、4つのコアドメイン(理解、推論、生成、アプリケーション)にわたるMLLMを評価する211のベンチマークを体系的にレビューする。
論文 参考訳(メタデータ) (2024-09-21T15:22:26Z) - LalaEval: A Holistic Human Evaluation Framework for Domain-Specific Large Language Models [6.002286552369069]
LalaEvalは、特定のドメイン内で標準化された人間の評価を行うための体系的な方法論を提供することによって、重要な研究ギャップを埋めることを目指している。
本稿では,ロジスティクス業界におけるフレームワークの適用例を示す。
論文 参考訳(メタデータ) (2024-08-23T19:12:45Z) - A Systematic Survey and Critical Review on Evaluating Large Language Models: Challenges, Limitations, and Recommendations [35.12731651234186]
大規模言語モデル(LLM)は、その顕著な能力により、最近大きな注目を集めている。
我々はこれらの不整合や信頼できない評価を引き起こす主要な課題と限界を体系的にレビューする。
批判的なレビューに基づいて、LLM評価が再現可能で、信頼性があり、堅牢であることを保証するために、私たちの視点と勧告を提示します。
論文 参考訳(メタデータ) (2024-07-04T17:15:37Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods [102.98899881389211]
F-Evalは、表現、常識、論理などの基本能力を評価するためのバイリンガル評価ベンチマークである。
参照不要な主観的タスクに対しては,APIモデルによるスコアの代替として,新たな評価手法を考案する。
論文 参考訳(メタデータ) (2024-01-26T13:55:32Z) - Leveraging Large Language Models for NLG Evaluation: Advances and Challenges [57.88520765782177]
大規模言語モデル(LLM)は、コヒーレンス、クリエイティビティ、コンテキスト関連など、生成されたコンテンツ品質を評価するための新たな道を開いた。
既存のLCMに基づく評価指標を整理し、これらの手法を理解し比較するための構造化された枠組みを提供する。
本稿では, 偏見, 堅牢性, ドメイン固有性, 統一評価などの未解決課題を議論することによって, 研究者に洞察を提供し, より公平で高度なNLG評価手法を提唱することを目的とする。
論文 参考訳(メタデータ) (2024-01-13T15:59:09Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
本稿では,テキスト内学習を用いた多次元評価器として,大規模言語モデルの有効性について検討する。
実験の結果,テキスト要約作業において,文脈内学習に基づく評価手法が学習評価フレームワークと競合していることが判明した。
次に、テキスト内サンプルの選択や数などの要因がパフォーマンスに与える影響を分析する。
論文 参考訳(メタデータ) (2023-06-01T23:27:49Z) - Evaluating the Performance of Large Language Models on GAOKAO Benchmark [53.663757126289795]
本稿では,中国のガオカオ検定の質問をサンプルとして用いた直感的なベンチマークであるガオカオベンチについて紹介する。
人間の評価により, GPT-4, ChatGPT, ERNIE-Botを含むLLMの変換総得点を得た。
また、LLMを用いて主観的質問を格付けし、モデルスコアが人間のスコアと適度な一貫性を達成することを確認する。
論文 参考訳(メタデータ) (2023-05-21T14:39:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。