Single-molecule Scale Magnetic Resonance Spectroscopy using Nitrogen-Vacancy Centers in Diamond
- URL: http://arxiv.org/abs/2501.03620v1
- Date: Tue, 07 Jan 2025 08:40:44 GMT
- Title: Single-molecule Scale Magnetic Resonance Spectroscopy using Nitrogen-Vacancy Centers in Diamond
- Authors: Jiangfeng Du, Fazhan Shi, Xi Kong, Fedor Jekezko, Jörg Wrachtrup,
- Abstract summary: Quantum sensing, particularly leveraging nitrogen-vacancy (NV) centers within diamond structures, presents a promising avenue for single-molecule magnetic resonance.
This review provides a comprehensive overview of the current state-of-the-art in single-molecule scale magnetic resonance.
- Score: 4.390029685572873
- License:
- Abstract: Single-molecule technology stands as a powerful tool, enabling the characterization of intricate structural and dynamic information that would otherwise remain concealed within the averaged behaviors of numerous molecules. This technology finds extensive application across diverse fields including physics, chemistry, biology, and medicine. Quantum sensing, particularly leveraging nitrogen-vacancy (NV) centers within diamond structures, presents a promising avenue for single-molecule magnetic resonance, offering prospects for sensing and imaging technology at the single-molecule level. Notably, while significant strides have been made in single-molecule scale magnetic resonance using NV centers over the past two decades, current approaches still exhibit limitations in magnetic sensitivity, spectral resolution, and spatial resolution. Particularly, the full reconstruction of three-dimensional positions of nuclear spins within single molecules remains an unattained goal. This review provides a comprehensive overview of the current state-of-the-art in single-molecule scale magnetic resonance, encompassing an analysis of various relevant techniques involving NV centers. Additionally, it explores the optimization of technical parameters associated with these methods. This detailed analysis serves as a foundation for the development of new technologies and the exploration of potential applications.
Related papers
- New opportunities in condensed matter physics for nanoscale quantum sensors [0.14993626998062629]
Nitrogen vacancy (NV) centre quantum sensors provide unique opportunities in studying condensed matter systems.
They are quantitative, noninvasive, physically robust, offer nanoscale resolution, and may be used across a wide range of temperatures.
These properties have been exploited in recent years to obtain nanoscale resolution measurements of static magnetic fields.
arXiv Detail & Related papers (2024-03-20T16:13:22Z) - Roadmap on Nanoscale Magnetic Resonance Imaging [27.807635502685876]
The goal of this article is to report the current state of the art in NanoMRI technologies.
It outlines the areas where they are poised to have impact, identify the challenges that lie ahead, and propose methods to meet these challenges.
This roadmap also shows how developments in NanoMRI techniques can lead to breakthroughs in emerging quantum science and technology applications.
arXiv Detail & Related papers (2023-12-14T11:54:01Z) - J-coupling NMR Spectroscopy with Nitrogen Vacancy Centers at High Fields [0.0]
We present a protocol to access J-couplings in both homonuclear and heteronuclear cases with NV centers at high magnetic fields.
Our protocol leads to a clear spectrum exclusively containing J-coupling features with high resolution.
arXiv Detail & Related papers (2023-11-20T16:15:41Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution.
The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.
arXiv Detail & Related papers (2022-09-12T12:21:00Z) - Advances in nano- and microscale NMR spectroscopy using diamond quantum
sensors [0.0]
Quantum technologies have seen a rapid developmental surge over the last couple of years.
One system stands out in particular: the nitrogen-vacancy center in diamond, an atomic-sized sensor allowing the detection of nuclear magnetic resonance (NMR) signals at unprecedented length scales down to a single proton.
arXiv Detail & Related papers (2022-05-24T16:22:11Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Kilohertz electron paramagnetic resonance spectroscopy of single
nitrogen centers at zero magnetic field [9.976365365803575]
nitrogen-vacancy centers in diamond serve as an atomic-sized magnetometer.
Current megahertz spectral resolution is still insufficient to resolve key heterogeneous molecular information.
We demonstrate a 27-fold narrower spectrum of single substitutional nitrogen centers in diamond with linewidth of several kilohertz.
arXiv Detail & Related papers (2020-05-29T17:59:48Z) - The limit of spin lifetime in solid-state electronic spins [77.34726150561087]
We provide a complete first-principles picture of spin relaxation that includes up to two-phonon processes.
We study a vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes.
arXiv Detail & Related papers (2020-04-08T14:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.