論文の概要: Efficient or Powerful? Trade-offs Between Machine Learning and Deep Learning for Mental Illness Detection on Social Media
- arxiv url: http://arxiv.org/abs/2503.01082v1
- Date: Mon, 03 Mar 2025 00:51:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:20:25.643696
- Title: Efficient or Powerful? Trade-offs Between Machine Learning and Deep Learning for Mental Illness Detection on Social Media
- Title(参考訳): 効率的・強力? ソーシャルメディアにおけるメンタル障害検出のための機械学習とディープラーニングのトレードオフ
- Authors: Zhanyi Ding, Zhongyan Wang, Yeyubei Zhang, Yuchen Cao, Yunchong Liu, Xiaorui Shen, Yexin Tian, Jianglai Dai,
- Abstract要約: ソーシャルメディアプラットフォームは、うつ病、不安、自殺などの状況に関するユーザー生成の議論を捉え、メンタルヘルスのトレンドに関する貴重な洞察を提供する。
機械学習(ML)とディープラーニング(DL)モデルは、テキストデータからメンタルヘルス状態を分類するためにますます応用されている。
本研究では、ALBERTやGated Recurrent Units(GRU)といったディープラーニングアーキテクチャとともに、ロジスティック回帰、ランダムフォレスト、LightGBMを含む複数のMLモデルを評価する。
その結果,MLモデルとDLモデルでは,中規模データセットの分類性能が同等であることが示唆された。
- 参考スコア(独自算出の注目度): 0.036136619420474754
- License:
- Abstract: Social media platforms provide valuable insights into mental health trends by capturing user-generated discussions on conditions such as depression, anxiety, and suicidal ideation. Machine learning (ML) and deep learning (DL) models have been increasingly applied to classify mental health conditions from textual data, but selecting the most effective model involves trade-offs in accuracy, interpretability, and computational efficiency. This study evaluates multiple ML models, including logistic regression, random forest, and LightGBM, alongside deep learning architectures such as ALBERT and Gated Recurrent Units (GRUs), for both binary and multi-class classification of mental health conditions. Our findings indicate that ML and DL models achieve comparable classification performance on medium-sized datasets, with ML models offering greater interpretability through variable importance scores, while DL models are more robust to complex linguistic patterns. Additionally, ML models require explicit feature engineering, whereas DL models learn hierarchical representations directly from text. Logistic regression provides the advantage of capturing both positive and negative associations between features and mental health conditions, whereas tree-based models prioritize decision-making power through split-based feature selection. This study offers empirical insights into the advantages and limitations of different modeling approaches and provides recommendations for selecting appropriate methods based on dataset size, interpretability needs, and computational constraints.
- Abstract(参考訳): ソーシャルメディアプラットフォームは、うつ病、不安、自殺などの状況に関するユーザー生成の議論を捉え、メンタルヘルスのトレンドに関する貴重な洞察を提供する。
機械学習(ML)とディープラーニング(DL)モデルは、テキストデータからメンタルヘルス状態を分類するためにますます応用されているが、最も効果的なモデルを選択するには、正確性、解釈可能性、計算効率のトレードオフが含まれる。
本研究は、精神状態の2段階・複数分類において、ALBERTやGated Recurrent Units(GRU)といったディープラーニングアーキテクチャとともに、ロジスティック回帰、ランダムフォレスト、LightGBMを含む複数のMLモデルを評価する。
その結果,MLモデルとDLモデルは中規模データセットにおいて同等の分類性能を達成し,MLモデルは可変重要度スコアによる解釈可能性の向上を実現し,DLモデルは複雑な言語パターンに対してより堅牢であることがわかった。
さらに、MLモデルは明示的な特徴工学を必要とし、DLモデルはテキストから直接階層的表現を学習する。
ロジスティック回帰は、特徴と精神状態の正と負の関連を捕捉する利点を提供する一方、ツリーベースのモデルは、分割ベースの特徴選択によって意思決定力を優先する。
本研究は、異なるモデリングアプローチの利点と限界に関する実証的な洞察を提供し、データセットのサイズ、解釈可能性のニーズ、計算制約に基づいて適切なメソッドを選択するための推奨を提供する。
関連論文リスト
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Subgroup Analysis via Model-based Rule Forest [0.0]
モデルベースDeep Rule Forests (mobDRF)は、データから透明なモデルを抽出するために設計された解釈可能な表現学習アルゴリズムである。
高齢者の認知機能低下の要因を明らかにするためにmobDRFを適用し,サブグループ分析と局所モデル最適化の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-27T13:40:15Z) - Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
複素データ内の因子化属性とその相互関係を学習するための双方向重み付きグラフベースフレームワークを提案する。
具体的には、グラフの初期ノードとして要素を抽出する$beta$-VAEベースのモジュールを提案する。
これらの相補的加群を統合することで、我々は細粒度、実用性、教師なしの絡み合いをうまく達成できる。
論文 参考訳(メタデータ) (2024-07-26T15:32:21Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
データ不足は機械学習(ML)モデリングの課題となる可能性がある。
現在のアプローチは、特徴計算とラベル予測に分類される。
本研究は、観測データに欠落した値でモデル化するコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T13:16:24Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
我々は、モデル選択に影響を及ぼす可能性のある重要な要因の観点から、複数のモデリング問題に対して異なるモデリングアプローチを体系的に比較する。
その結果,非凝集性予測性能が最も高いモデルでは,行動指標やアグリゲーションモードのシェアが低下することが示唆された。
MNLモデルは様々な状況において堅牢に機能するが、ML手法はWillingness to Payのような行動指標の推定を改善することができる。
論文 参考訳(メタデータ) (2023-01-11T11:10:32Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
アクティブラーニングは、モデルのパラメータに適合するために必要なデータ量を削減しようとする。
潜在変数モデルは神経科学、心理学、その他の様々な工学、科学分野において重要な役割を果たす。
論文 参考訳(メタデータ) (2022-02-27T19:07:12Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。