CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI
Reconstruction
- URL: http://arxiv.org/abs/2306.11238v3
- Date: Mon, 15 Jan 2024 11:45:49 GMT
- Title: CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI
Reconstruction
- Authors: Liping Zhang, Xiaobo Li, and Weitian Chen
- Abstract summary: Undersampling k-space data in MRI reduces scan time but pose challenges in image reconstruction.
We propose CAMP-Net, an unrolling-based Consistency-Aware Multi-Prior Network for accelerated MRI reconstruction.
- Score: 4.967600587813224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Undersampling k-space data in MRI reduces scan time but pose challenges in
image reconstruction. Considerable progress has been made in reconstructing
accelerated MRI. However, restoration of high-frequency image details in highly
undersampled data remains challenging. To address this issue, we propose
CAMP-Net, an unrolling-based Consistency-Aware Multi-Prior Network for
accelerated MRI reconstruction. CAMP-Net leverages complementary multi-prior
knowledge and multi-slice information from various domains to enhance
reconstruction quality. Specifically, CAMP-Net comprises three interleaved
modules for image enhancement, k-space restoration, and calibration
consistency, respectively. These modules jointly learn priors from data in
image domain, k-domain, and calibration region, respectively, in data-driven
manner during each unrolled iteration. Notably, the encoded calibration prior
knowledge extracted from auto-calibrating signals implicitly guides the
learning of consistency-aware k-space correlation for reliable interpolation of
missing k-space data. To maximize the benefits of image domain and k-domain
prior knowledge, the reconstructions are aggregated in a frequency fusion
module, exploiting their complementary properties to optimize the trade-off
between artifact removal and fine detail preservation. Additionally, we
incorporate a surface data fidelity layer during the learning of k-domain and
calibration domain priors to prevent degradation of the reconstruction caused
by padding-induced data imperfections. We evaluate the generalizability and
robustness of our method on three large public datasets with varying
acceleration factors and sampling patterns. The experimental results
demonstrate that our method outperforms state-of-the-art approaches in terms of
both reconstruction quality and $T_2$ mapping estimation, particularly in
scenarios with high acceleration factors.
Related papers
- Multi-scale Restoration of Missing Data in Optical Time-series Images with Masked Spatial-Temporal Attention Network [0.6675733925327885]
Existing methods for imputing missing values in remote sensing images fail to fully exploit auxiliary information.
This paper proposes a deep learning-based novel approach called MS2 for reconstructing time-series remote sensing images.
arXiv Detail & Related papers (2024-06-19T09:05:05Z) - Generalized Implicit Neural Representation for Efficient MRI Parallel Imaging Reconstruction [16.63720411275398]
This study presents a generalized implicit neural representation (INR)-based framework for MRI PI reconstruction.
The framework's INR model treats fully sampled MR images as a continuous function of spatial coordinates and prior voxel-specific features.
Experiments on publicly available MRI datasets demonstrate the superior performance of the proposed method in reconstructing images at multiple acceleration factors.
arXiv Detail & Related papers (2023-09-12T09:07:03Z) - Hybrid Parallel Imaging and Compressed Sensing MRI Reconstruction with
GRAPPA Integrated Multi-loss Supervised GAN [2.7110495144693374]
This paper proposes a novel Generative Adversarial Network (GAN) namely RECGAN-GR supervised with multi-modal losses for de-aliasing the reconstructed image.
The proposed work contributes to significant improvement in the image quality for low retained data leading to 5x or 10x faster acquisition.
arXiv Detail & Related papers (2022-09-19T07:26:45Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
arXiv Detail & Related papers (2022-03-29T07:56:55Z) - Specificity-Preserving Federated Learning for MR Image Reconstruction [94.58912814426122]
Federated learning can be used to improve data privacy and efficiency in magnetic resonance (MR) image reconstruction.
Recent FL techniques tend to solve this by enhancing the generalization of the global model.
We propose a specificity-preserving FL algorithm for MR image reconstruction (FedMRI)
arXiv Detail & Related papers (2021-12-09T22:13:35Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
We introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adrial TransformERs (SLATER)
A zero-shot reconstruction is performed on undersampled test data, where inference is performed by optimizing network parameters.
Experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against several state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-05-15T02:01:21Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
We show that neural network layers that explicitly combine frequency and image feature representations can be used as a versatile building block for reconstruction from frequency space data.
The proposed joint learning schemes enable both correction of artifacts native to the frequency space and manipulation of image space representations to reconstruct coherent image structures at every layer of the network.
arXiv Detail & Related papers (2020-07-02T23:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.