LM-Net: A Light-weight and Multi-scale Network for Medical Image Segmentation
- URL: http://arxiv.org/abs/2501.03838v1
- Date: Tue, 07 Jan 2025 14:47:15 GMT
- Title: LM-Net: A Light-weight and Multi-scale Network for Medical Image Segmentation
- Authors: Zhenkun Lu, Chaoyin She, Wei Wang, Qinghua Huang,
- Abstract summary: Current medical image segmentation approaches have limitations in deeply exploring multi-scale information.
We propose a novel, lightweight, and multi-scale architecture (LM-Net) to enhance segmentation accuracy.
Our proposed model achieves state-of-the-art results, surpassing previous methods, while only requiring 4.66G FLOPs and 5.4M parameters.
- Score: 7.963884317408774
- License:
- Abstract: Current medical image segmentation approaches have limitations in deeply exploring multi-scale information and effectively combining local detail textures with global contextual semantic information. This results in over-segmentation, under-segmentation, and blurred segmentation boundaries. To tackle these challenges, we explore multi-scale feature representations from different perspectives, proposing a novel, lightweight, and multi-scale architecture (LM-Net) that integrates advantages of both Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) to enhance segmentation accuracy. LM-Net employs a lightweight multi-branch module to capture multi-scale features at the same level. Furthermore, we introduce two modules to concurrently capture local detail textures and global semantics with multi-scale features at different levels: the Local Feature Transformer (LFT) and Global Feature Transformer (GFT). The LFT integrates local window self-attention to capture local detail textures, while the GFT leverages global self-attention to capture global contextual semantics. By combining these modules, our model achieves complementarity between local and global representations, alleviating the problem of blurred segmentation boundaries in medical image segmentation. To evaluate the feasibility of LM-Net, extensive experiments have been conducted on three publicly available datasets with different modalities. Our proposed model achieves state-of-the-art results, surpassing previous methods, while only requiring 4.66G FLOPs and 5.4M parameters. These state-of-the-art results on three datasets with different modalities demonstrate the effectiveness and adaptability of our proposed LM-Net for various medical image segmentation tasks.
Related papers
- INF-LLaVA: Dual-perspective Perception for High-Resolution Multimodal Large Language Model [71.50973774576431]
We propose a novel MLLM, INF-LLaVA, designed for effective high-resolution image perception.
We introduce a Dual-perspective Cropping Module (DCM), which ensures that each sub-image contains continuous details from a local perspective.
Second, we introduce Dual-perspective Enhancement Module (DEM) to enable the mutual enhancement of global and local features.
arXiv Detail & Related papers (2024-07-23T06:02:30Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
This paper proposes an innovative U-shaped network called BEFUnet, which enhances the fusion of body and edge information for precise medical image segmentation.
The BEFUnet comprises three main modules, including a novel Local Cross-Attention Feature (LCAF) fusion module, a novel Double-Level Fusion (DLF) module, and dual-branch encoder.
The LCAF module efficiently fuses edge and body features by selectively performing local cross-attention on features that are spatially close between the two modalities.
arXiv Detail & Related papers (2024-02-13T21:03:36Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - AIMS: All-Inclusive Multi-Level Segmentation [93.5041381700744]
We propose a new task, All-Inclusive Multi-Level (AIMS), which segments visual regions into three levels: part, entity, and relation.
We also build a unified AIMS model through multi-dataset multi-task training to address the two major challenges of annotation inconsistency and task correlation.
arXiv Detail & Related papers (2023-05-28T16:28:49Z) - DuAT: Dual-Aggregation Transformer Network for Medical Image
Segmentation [21.717520350930705]
Transformer-based models have been widely demonstrated to be successful in computer vision tasks.
However, they are often dominated by features of large patterns leading to the loss of local details.
We propose a Dual-Aggregation Transformer Network called DuAT, which is characterized by two innovative designs.
Our proposed model outperforms state-of-the-art methods in the segmentation of skin lesion images, and polyps in colonoscopy images.
arXiv Detail & Related papers (2022-12-21T07:54:02Z) - LACV-Net: Semantic Segmentation of Large-Scale Point Cloud Scene via
Local Adaptive and Comprehensive VLAD [13.907586081922345]
We propose an end-to-end deep neural network called LACV-Net for large-scale point cloud semantic segmentation.
The proposed network contains three main components: 1) a local adaptive feature augmentation module (LAFA) to adaptively learn the similarity of centroids and neighboring points to augment the local context; 2) a comprehensive VLAD module that fuses local features with multi-layer, multi-scale, and multi-resolution to represent a comprehensive global description vector; and 3) an aggregation loss function to effectively optimize the segmentation boundaries by constraining the adaptive weight from the LAFA module.
arXiv Detail & Related papers (2022-10-12T02:11:00Z) - MAFormer: A Transformer Network with Multi-scale Attention Fusion for
Visual Recognition [45.68567088645708]
We introduce Multi-scale Attention Fusion into transformer (MAFormer)
MAFormer explores local aggregation and global feature extraction in a dual-stream framework for visual recognition.
Our MAFormer achieves state-of-the-art performance on common vision tasks.
arXiv Detail & Related papers (2022-08-31T06:29:27Z) - An Efficient Multi-Scale Fusion Network for 3D Organ at Risk (OAR)
Segmentation [2.6770199357488242]
We propose a new OAR segmentation framework called OARFocalFuseNet.
It fuses multi-scale features and employs focal modulation for capturing global-local context across multiple scales.
Our best performing method (OARFocalFuseNet) obtained a dice coefficient of 0.7995 and hausdorff distance of 5.1435 on OpenKBP datasets.
arXiv Detail & Related papers (2022-08-15T19:40:18Z) - Global-and-Local Collaborative Learning for Co-Salient Object Detection [162.62642867056385]
The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images.
We propose a global-and-local collaborative learning architecture, which includes a global correspondence modeling (GCM) and a local correspondence modeling (LCM)
The proposed GLNet is evaluated on three prevailing CoSOD benchmark datasets, demonstrating that our model trained on a small dataset (about 3k images) still outperforms eleven state-of-the-art competitors trained on some large datasets (about 8k-200k images)
arXiv Detail & Related papers (2022-04-19T14:32:41Z) - Boosting Few-shot Semantic Segmentation with Transformers [81.43459055197435]
TRansformer-based Few-shot Semantic segmentation method (TRFS)
Our model consists of two modules: Global Enhancement Module (GEM) and Local Enhancement Module (LEM)
arXiv Detail & Related papers (2021-08-04T20:09:21Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.