Machine learning applications in archaeological practices: a review
- URL: http://arxiv.org/abs/2501.03840v2
- Date: Mon, 20 Jan 2025 10:22:31 GMT
- Title: Machine learning applications in archaeological practices: a review
- Authors: Mathias Bellat, Jordy D. Orellana Figueroa, Jonathan S. Reeves, Ruhollah Taghizadeh-Mehrjardi, Claudio Tennie, Thomas Scholten,
- Abstract summary: We reviewed 135 articles published between 1997 and 2022.
Automatic structure detection and artefact classification were the most represented tasks.
We observed, in some cases, poorly defined requirements and caveats of the machine learning methods used.
- Score: 0.0
- License:
- Abstract: Artificial intelligence and machine learning applications in archaeology have increased significantly in recent years, and these now span all subfields, geographical regions, and time periods. The prevalence and success of these applications have remained largely unexamined, as recent reviews on the use of machine learning in archaeology have only focused only on specific subfields of archaeology. Our review examined an exhaustive corpus of 135 articles published between 1997 and 2022. We observed a significant increase in the number of publications from 2019 onwards. Automatic structure detection and artefact classification were the most represented tasks in the articles reviewed, followed by taphonomy, and archaeological predictive modelling. From the review, clustering and unsupervised methods were underrepresented compared to supervised models. Artificial neural networks and ensemble learning account for two thirds of the total number of models used. However, if machine learning models are gaining in popularity they remain subject to misunderstanding. We observed, in some cases, poorly defined requirements and caveats of the machine learning methods used. Furthermore, the goals and the needs of machine learning applications for archaeological purposes are in some cases unclear or poorly expressed. To address this, we proposed a workflow guide for archaeologists to develop coherent and consistent methodologies adapted to their research questions, project scale and data. As in many other areas, machine learning is rapidly becoming an important tool in archaeological research and practice, useful for the analyses of large and multivariate data, although not without limitations. This review highlights the importance of well-defined and well-reported structured methodologies and collaborative practices to maximise the potential of applications of machine learning methods in archaeology.
Related papers
- Deep Learning and Machine Learning -- Object Detection and Semantic Segmentation: From Theory to Applications [17.571124565519263]
In-depth exploration of object detection and semantic segmentation is provided.
State-of-the-art advancements in machine learning and deep learning are reviewed.
Analysis of big data processing is presented.
arXiv Detail & Related papers (2024-10-21T02:10:49Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Onologies are widely used for representing domain knowledge and meta data.
logical reasoning that can directly support are quite limited in learning, approximation and prediction.
One straightforward solution is to integrate statistical analysis and machine learning.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Investigating Reproducibility in Deep Learning-Based Software Fault
Prediction [16.25827159504845]
With the rapid adoption of increasingly complex machine learning models, it becomes more and more difficult for scholars to reproduce the results that are reported in the literature.
This is in particular the case when the applied deep learning models and the evaluation methodology are not properly documented and when code and data are not shared.
We have conducted a systematic review of the current literature and examined the level of 56 research articles that were published between 2019 and 2022 in top-tier software engineering conferences.
arXiv Detail & Related papers (2024-02-08T13:00:18Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
Temporal data, notably time series andtemporal-temporal data, are prevalent in real-world applications.
Recent advances in large language and other foundational models have spurred increased use in time series andtemporal data mining.
arXiv Detail & Related papers (2023-10-16T09:06:00Z) - A Survey on Few-Shot Class-Incremental Learning [11.68962265057818]
Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks.
This paper provides a comprehensive survey on FSCIL.
FSCIL has achieved impressive achievements in various fields of computer vision.
arXiv Detail & Related papers (2023-04-17T10:15:08Z) - Bridging Machine Learning and Sciences: Opportunities and Challenges [0.0]
Application of machine learning in sciences has seen exciting advances in recent years.
Recently, deep neural nets-based out-of-distribution detection has made great progress for high-dimensional data.
We take a critical look at their applicative prospects including data universality, experimental protocols, model robustness, etc.
arXiv Detail & Related papers (2022-10-24T17:54:46Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
The use of sophisticated statistical models that influence decisions in domains of high societal relevance is on the rise.
Many governments, institutions, and companies are reluctant to their adoption as their output is often difficult to explain in human-interpretable ways.
Recently, the academic literature has proposed a substantial amount of methods for providing interpretable explanations to machine learning models.
arXiv Detail & Related papers (2021-04-09T01:46:34Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.