Bridging Machine Learning and Sciences: Opportunities and Challenges
- URL: http://arxiv.org/abs/2210.13441v2
- Date: Thu, 2 Nov 2023 13:24:36 GMT
- Title: Bridging Machine Learning and Sciences: Opportunities and Challenges
- Authors: Taoli Cheng
- Abstract summary: Application of machine learning in sciences has seen exciting advances in recent years.
Recently, deep neural nets-based out-of-distribution detection has made great progress for high-dimensional data.
We take a critical look at their applicative prospects including data universality, experimental protocols, model robustness, etc.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of machine learning in sciences has seen exciting advances in
recent years. As a widely applicable technique, anomaly detection has been long
studied in the machine learning community. Especially, deep neural nets-based
out-of-distribution detection has made great progress for high-dimensional
data. Recently, these techniques have been showing their potential in
scientific disciplines. We take a critical look at their applicative prospects
including data universality, experimental protocols, model robustness, etc. We
discuss examples that display transferable practices and domain-specific
challenges simultaneously, providing a starting point for establishing a novel
interdisciplinary research paradigm in the near future.
Related papers
- Deep Learning for Educational Data Science [0.6138671548064356]
Use cases range from advanced knowledge tracing models that can leverage open-ended student essays or snippets of code to automatic affect and behavior detectors.
This chapter provides a brief introduction to deep learning, describes some of its advantages and limitations, presents a survey of its many uses in education, and discusses how it may further come to shape the field of educational data science.
arXiv Detail & Related papers (2024-04-12T19:17:14Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
arXiv Detail & Related papers (2024-03-26T17:12:34Z) - Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research [0.0]
Building on these efforts we turn towards another critical challenge in machine learning, namely the curse of dimensionality.
Using the closely linked concept of intrinsic dimension we investigate to which the used machine learning models are influenced by the extend dimension of the data sets they are trained on.
arXiv Detail & Related papers (2024-03-13T11:44:30Z) - Interpretable Machine Learning for Discovery: Statistical Challenges \&
Opportunities [1.2891210250935146]
We discuss and review the field of interpretable machine learning.
We outline the types of discoveries that can be made using Interpretable Machine Learning.
We focus on the grand challenge of how to validate these discoveries in a data-driven manner.
arXiv Detail & Related papers (2023-08-02T23:57:31Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
We introduce a novel taxonomy that categorizes existing knowledge-enhanced methods into two primary categories and four subcategories.
We elucidate the current application domains and provide insight into promising prospects for future research.
arXiv Detail & Related papers (2023-02-04T04:54:30Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - Deep Learning meets Liveness Detection: Recent Advancements and
Challenges [3.2011056280404637]
We present a comprehensive survey on the literature related to deep-feature-based FAS methods since 2017.
We cover predominant public datasets for FAS in chronological order, their evolutional progress, and the evaluation criteria.
arXiv Detail & Related papers (2021-12-29T19:24:58Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
Article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
This article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
arXiv Detail & Related papers (2020-05-17T11:22:11Z) - A Survey of Deep Learning for Scientific Discovery [13.372738220280317]
We have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks.
The amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity.
This suggests many exciting opportunities for deep learning applications in scientific settings.
arXiv Detail & Related papers (2020-03-26T06:16:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.