論文の概要: AlphaPO - Reward shape matters for LLM alignment
- arxiv url: http://arxiv.org/abs/2501.03884v2
- Date: Fri, 14 Feb 2025 23:35:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:05:03.374842
- Title: AlphaPO - Reward shape matters for LLM alignment
- Title(参考訳): AlphaPO - LLMアライメントのための逆形状問題
- Authors: Aman Gupta, Shao Tang, Qingquan Song, Sirou Zhu, Jiwoo Hong, Ankan Saha, Viral Gupta, Noah Lee, Eunki Kim, Siyu Zhu, Parag Agarwal, Natesh Pillai, S. Sathiya Keerthi,
- Abstract要約: textbfAlphaPOは、標準的なログ報酬以外の報酬関数の形状を変えるのに役立つ新しいDAAである。
最高のパフォーマンスを持つDAAの1つであるSimPOと比較して、AlphaPOはアライメント性能が7%から10%向上した。
- 参考スコア(独自算出の注目度): 8.688476316386176
- License:
- Abstract: Reinforcement Learning with Human Feedback (RLHF) and its variants have made huge strides toward the effective alignment of large language models (LLMs) to follow instructions and reflect human values. More recently, Direct Alignment Algorithms (DAAs) have emerged in which the reward modeling stage of RLHF is skipped by characterizing the reward directly as a function of the policy being learned. Some popular examples of DAAs include Direct Preference Optimization (DPO) and Simple Preference Optimization (SimPO). These methods often suffer from likelihood displacement, a phenomenon by which the probabilities of preferred responses are often reduced undesirably. In this paper, we argue that, for DAAs the reward (function) shape matters. We introduce \textbf{AlphaPO}, a new DAA method that leverages an $\alpha$-parameter to help change the shape of the reward function beyond the standard log reward. AlphaPO helps maintain fine-grained control over likelihood displacement and over-optimization. Compared to SimPO, one of the best performing DAAs, AlphaPO leads to about 7\% to 10\% relative improvement in alignment performance for the instruct versions of Mistral-7B and Llama3-8B while achieving 15\% to 50\% relative improvement over DPO on the same models. The analysis and results presented highlight the importance of the reward shape, and how one can systematically change it to affect training dynamics, as well as improve alignment performance.
- Abstract(参考訳): Reinforcement Learning with Human Feedback (RLHF)とその変種は、指示に従い、人間の価値を反映する大規模言語モデル(LLM)の効果的なアライメントに向けて大きな前進を遂げている。
最近では、RLHFの報酬モデリング段階をスキップする直接アライメントアルゴリズム(DAA)が登場し、その報酬を学習されるポリシーの関数として直接特徴付けている。
DAAの一般的な例としては、DPO(Direct Preference Optimization)やSimPO(Simple Preference Optimization)がある。
これらの方法は、しばしば、好ましくない反応の確率が望ましくないほど減少する現象である確率変位に悩まされる。
本稿では,DAAに対して報酬(機能)の形状が重要であることを論じる。
これは、$\alpha$-parameterを利用して、標準的なログ報酬を超えて報酬関数の形状を変えるのに役立つ新しいDAAメソッドである。
AlphaPOは、可能性が高い変位と過度な最適化に対するきめ細かい制御を維持するのに役立つ。
最高のDAAの1つであるSimPOと比較すると、AlphaPOはMistral-7BとLlama3-8Bのインストラクタバージョンのアライメント性能を約7~10%改善し、同じモデルでのDPOよりも15~50%改善した。
分析と結果は、報酬形態の重要性と、トレーニングのダイナミクスに影響を与え、アライメントのパフォーマンスを向上させるために、体系的にそれを変更できるかを強調した。
関連論文リスト
- $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPOは、大規模言語モデルの適応的優先最適化アルゴリズムである。
ポリシーモデルと参照モデルのバランスを取り、パーソナライズされた報酬マージンを達成する。
さまざまなモデル設定でDPOとSimPOを一貫して上回ります。
論文 参考訳(メタデータ) (2024-10-14T04:29:57Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
報奨条件付き大言語モデル(LLM)を導入し、データセット内の応答品質のスペクトル全体から学習する。
そこで本稿では,品質スコアに優先ペアを条件付け,報酬を加算したデータセットを構築する,効果的なデータレバーベリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T16:01:51Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) は、大きな言語モデル(LLM)を人間の好みに合わせるための重要なツールとして登場した。
直接選好最適化(DPO)は、報酬関数を明示的に見積もることなく、ポリシー最適化問題としてRLHFを定式化する。
本稿では,既存の最適化アルゴリズムを統一したAPO(Accelerated Preference Optimization)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-08T18:51:01Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Minor DPO reject penalty to increase training robustness [8.971332948872185]
人間の嗜好からの学習は、ダウンストリームタスクにおいて、事前学習されたLLMを人間の嗜好に合わせるために、大規模言語モデル(LLM)の微調整ステップで使用されるパラダイムである。
近年,簡易なRLフリー手法でアライメント問題を解決するために,DPO(Direct Preference Optimization)が提案されている。
本稿では、DPOにおける$beta$の動作メカニズムを分析し、RLアルゴリズムとDPOの構文差を明らかにし、DPOの単純化による潜在的な不足について理解する。
論文 参考訳(メタデータ) (2024-08-19T09:29:31Z) - Bootstrapping Language Models with DPO Implicit Rewards [45.68366127605774]
直接選好最適化(DPO)は、人間のフィードバックからの強化学習において、過去の作業からプロセスを大幅に単純化した。
本研究では,この暗黙の報酬モデル自体をブートストラップ方式で利用することにより,LLMをさらに整合させることができることを示す。
DPO ImpliCit rEwards (DICE) を用いた自己アライメント(自己アライメント)という手法は、アライメントの大幅な改善と優れた性能を実現する。
論文 参考訳(メタデータ) (2024-06-14T06:57:18Z) - Scaling Laws for Reward Model Overoptimization in Direct Alignment Algorithms [50.808123629394245]
Direct Preference Optimizationのようなダイレクトアライメントアルゴリズム(DDA)は、古典的なRLHFパイプラインの代替として登場した。
この研究は、DAAに対する過度な最適化やハッキングの問題を定式化し、その成果を目標、訓練体制、モデルスケールにわたって探求する。
論文 参考訳(メタデータ) (2024-06-05T03:41:37Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Weak-to-Strong Extrapolation Expedites Alignment [135.12769233630362]
モデルと人間の嗜好との整合性を高めるために,ExPOと呼ばれる手法を提案する。
ExPOは市販のDPO/RLHFモデルを一貫して改善することを示した。
我々は、アライメントトレーニング中に学んだ報酬信号を増幅するExPOの本質に光を当てた。
論文 参考訳(メタデータ) (2024-04-25T17:39:50Z) - Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for
LLM Alignment [37.52249093928251]
本稿では,新しい枠組み,相対的フィードバックによる強化学習,新しい軌道方向ポリシー勾配アルゴリズムを提案する。
理論的には、P3Oは等価報酬に不変であり、PPOの複雑さを避ける。
実証的な評価では、P3OはKL-RewardトレードオフにおいてPPOよりも優れており、ヒトの嗜好に合わせたり、以前の方法よりも優れていることが示されている。
論文 参考訳(メタデータ) (2023-09-30T01:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。