論文の概要: Bootstrapping Language Models with DPO Implicit Rewards
- arxiv url: http://arxiv.org/abs/2406.09760v2
- Date: Fri, 07 Mar 2025 15:26:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:24:13.832691
- Title: Bootstrapping Language Models with DPO Implicit Rewards
- Title(参考訳): DPOインプット・リワードを用いたブートストラップ言語モデル
- Authors: Changyu Chen, Zichen Liu, Chao Du, Tianyu Pang, Qian Liu, Arunesh Sinha, Pradeep Varakantham, Min Lin,
- Abstract要約: 直接選好最適化(DPO)は、人間のフィードバックからの強化学習において、過去の作業からプロセスを大幅に単純化した。
本研究では,この暗黙の報酬モデル自体をブートストラップ方式で利用することにより,LLMをさらに整合させることができることを示す。
DPO ImpliCit rEwards (DICE) を用いた自己アライメント(自己アライメント)という手法はアライメントの大幅な改善を示す。
- 参考スコア(独自算出の注目度): 45.68366127605774
- License:
- Abstract: Human alignment in large language models (LLMs) is an active area of research. A recent groundbreaking work, direct preference optimization (DPO), has greatly simplified the process from past work in reinforcement learning from human feedback (RLHF) by bypassing the reward learning stage in RLHF. DPO, after training, provides an implicit reward model. In this work, we make a novel observation that this implicit reward model can by itself be used in a bootstrapping fashion to further align the LLM. Our approach is to use the rewards from a current LLM to construct a preference dataset, which is then used in subsequent DPO rounds. We incorporate two refinements to further improve our approach: 1) length-regularized reward shaping to make the preference dataset length-unbiased; 2) experience replay to enhance the quality of the preference dataset. Our approach, named self-alignment with DPO ImpliCit rEwards (DICE), shows great improvements in alignment. It achieves an increase of more than 8$\\%$ in lengthcontrolled win rate on AlpacaEval 2 for all the different base models that we tried, without relying on external feedback. Our code is available at https://github.com/sail-sg/dice.
- Abstract(参考訳): 大規模言語モデル(LLM)における人間のアライメントは研究の活発な領域である。
近年、人間フィードバック(RLHF)からの強化学習において、RLHFの報酬学習段階をバイパスすることで、直接選好最適化(DPO)が大幅に単純化されている。
DPOはトレーニング後、暗黙の報酬モデルを提供する。
本研究では,この暗黙の報酬モデル自体をブートストラップ方式で利用することにより,LLMをさらに整合させることができることを示す。
我々のアプローチは、現在のLLMから得られる報酬を使って好みのデータセットを構築し、その後のDPOラウンドで使用することである。
アプローチをさらに改善するために、2つの改良点を取り入れます。
1) 選好データセットの長さを偏りなくするために、長さ規則化された報酬形成
2) 嗜好データセットの品質を高めるためにリプレイを経験する。
DPO ImpliCit rEwards (DICE) を用いた自己アライメント(自己アライメント)という手法はアライメントの大幅な改善を示す。
外部からのフィードバックに頼らずに、私たちが試したすべてのベースモデルに対して、AlpacaEval 2で8$\\%$以上の長制御の勝利率を達成します。
私たちのコードはhttps://github.com/sail-sg/dice.comから入手可能です。
関連論文リスト
- AlphaPO - Reward shape matters for LLM alignment [8.688476316386176]
textbfAlphaPOは、標準的なログ報酬以外の報酬関数の形状を変えるのに役立つ新しいDAAである。
最高のパフォーマンスを持つDAAの1つであるSimPOと比較して、AlphaPOはアライメント性能が7%から10%向上した。
論文 参考訳(メタデータ) (2025-01-07T15:46:42Z) - How to Evaluate Reward Models for RLHF [51.31240621943791]
我々は、RLHF(Reinforcement Learning from Human Feedback)を通して強力な言語モデルを生成する能力を定量化する報酬モデルのための新しいベンチマークを導入する。
我々は,プロキシタスクの報酬モデルを評価することにより,下流LLM性能の予測モデルを構築した。
大規模クラウドソースによる人選好プラットフォーム上でのエンドツーエンドのRLHF実験をローンチした。
論文 参考訳(メタデータ) (2024-10-18T21:38:21Z) - Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level [50.897438358317686]
また, iLR-DPOは, 冗長性を増大させることなく, GPT-4と同等の7Bモデルを実現できることを示した。
具体的には、我々の7Bモデルは、AlpacaEval 2.0で$texttGPT-4 Preview$に対して50.5%の利益率を達成する。
論文 参考訳(メタデータ) (2024-06-17T17:55:38Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
近年の進歩は、嗜好の確率で直接作業することで、人間の嗜好をより正確に反映できることを示している。
本稿では,言語モデルアライメントのためのセルフプレイ方式を提案する。
我々の手法はSPPO(Self-Play Preference Optimization)と呼ばれ、繰り返しポリシー更新を利用してナッシュ均衡を確実に近似する。
論文 参考訳(メタデータ) (2024-05-01T17:59:20Z) - Weak-to-Strong Extrapolation Expedites Alignment [135.12769233630362]
モデルと人間の嗜好との整合性を高めるために,ExPOと呼ばれる手法を提案する。
ExPOは市販のDPO/RLHFモデルを一貫して改善することを示した。
我々は、アライメントトレーニング中に学んだ報酬信号を増幅するExPOの本質に光を当てた。
論文 参考訳(メタデータ) (2024-04-25T17:39:50Z) - Mixed Preference Optimization: Reinforcement Learning with Data Selection and Better Reference Model [3.300814846990438]
大きな言語モデル(LLM)は、自然言語の処理と生成能力によって、ますます人気が高まっている。
大量のテキストのデータセットでトレーニングされているため、LLMは有害なバイアスを継承し、人間の値と一致しない出力を生成することができる。
本稿では,人間フィードバックを用いた強化学習(RLHF)と直接選好最適化(DPO)のような対照的な学習手法の2つのLLMアライメントについて検討する。
RLHFとDPOの安定性とロバスト性を解析することにより,両手法の弱点を緩和する新しい手法MPOを提案する。
論文 参考訳(メタデータ) (2024-03-28T14:15:10Z) - Disentangling Length from Quality in Direct Preference Optimization [93.74831404396174]
RLHF(Reinforcement Learning from Human Feedback)は、近年の大規模言語モデルの成功において重要な要素である。
RLHFは、冗長性のような人間の嗜好のバイアスを利用することが知られている。
我々は,モデル品質の改善を維持しつつ,長さの搾取を防止するための基本的かつ単純な正規化戦略を開発する。
論文 参考訳(メタデータ) (2024-03-28T06:03:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。