SPECTRE: A Hybrid System for an Adaptative and Optimised Cyber Threats Detection, Response and Investigation in Volatile Memory
- URL: http://arxiv.org/abs/2501.03898v1
- Date: Tue, 07 Jan 2025 16:05:27 GMT
- Title: SPECTRE: A Hybrid System for an Adaptative and Optimised Cyber Threats Detection, Response and Investigation in Volatile Memory
- Authors: Arslan Tariq Syed, Mohamed Chahine Ghanem, Elhadj Benkhelifa, Fauzia Idrees Abro,
- Abstract summary: This research introduces SPECTRE, a modular Cyber Incident Response System designed to enhance threat detection, investigation, and visualization.<n>Its capabilities safely replicate realistic attack scenarios, such as credential dumping and malicious process injections, for controlled experimentation.<n>SPECTRE advanced visualization techniques transform raw memory data into actionable insights, aiding Red, Blue and Purple teams in refining strategies and responding effectively to threats.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing sophistication of modern cyber threats, particularly file-less malware relying on living-off-the-land techniques, poses significant challenges to traditional detection mechanisms. Memory forensics has emerged as a crucial method for uncovering such threats by analysing dynamic changes in memory. This research introduces SPECTRE (Snapshot Processing, Emulation, Comparison, and Threat Reporting Engine), a modular Cyber Incident Response System designed to enhance threat detection, investigation, and visualization. By adopting Volatility JSON format as an intermediate output, SPECTRE ensures compatibility with widely used DFIR tools, minimizing manual data transformations and enabling seamless integration into established workflows. Its emulation capabilities safely replicate realistic attack scenarios, such as credential dumping and malicious process injections, for controlled experimentation and validation. The anomaly detection module addresses critical attack vectors, including RunDLL32 abuse and malicious IP detection, while the IP forensics module enhances threat intelligence by integrating tools like Virus Total and geolocation APIs. SPECTRE advanced visualization techniques transform raw memory data into actionable insights, aiding Red, Blue and Purple teams in refining strategies and responding effectively to threats. Bridging gaps between memory and network forensics, SPECTRE offers a scalable, robust platform for advancing threat detection, team training, and forensic research in combating sophisticated cyber threats.
Related papers
- MDHP-Net: Detecting an Emerging Time-exciting Threat in IVN [42.74889568823579]
We identify a new time-exciting threat model against in-vehicle network (IVN)
These attacks inject malicious messages that exhibit a time-exciting effect, gradually manipulating network traffic to disrupt vehicle operations and compromise safety-critical functions.
To detect time-exciting threat, we introduce MDHP-Net, leveraging Multi-Dimentional Hawkes Process (MDHP) and temporal and message-wise feature extracting structures.
arXiv Detail & Related papers (2025-04-16T08:41:24Z) - Cyber Defense Reinvented: Large Language Models as Threat Intelligence Copilots [36.809323735351825]
CYLENS is a cyber threat intelligence copilot powered by large language models (LLMs)
CYLENS is designed to assist security professionals throughout the entire threat management lifecycle.
It supports threat attribution, contextualization, detection, correlation, prioritization, and remediation.
arXiv Detail & Related papers (2025-02-28T07:16:09Z) - Predicting Vulnerability to Malware Using Machine Learning Models: A Study on Microsoft Windows Machines [0.0]
This study addresses the need for effective malware detection strategies by leveraging Machine Learning (ML) techniques.<n>Our research aims to develop an advanced ML model that accurately predicts malware vulnerabilities based on the specific conditions of individual machines.
arXiv Detail & Related papers (2025-01-05T10:04:58Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
The transition to smart grids has increased the vulnerability of electrical power systems to advanced cyber threats.<n>We propose a co-simulation framework that employs an autonomous agent to execute modular cyberattacks.<n>Our approach offers a flexible, versatile source for data generation, aiding in faster prototyping and reducing development resources and time.
arXiv Detail & Related papers (2024-12-05T08:56:38Z) - MDHP-Net: Detecting Injection Attacks on In-vehicle Network using Multi-Dimensional Hawkes Process and Temporal Model [44.356505647053716]
In this paper, we consider a specific type of cyberattack known as the injection attack.
These injection attacks have effect over time, gradually manipulating network traffic and disrupting the vehicle's normal functioning.
We propose an injection attack detector, MDHP-Net, which integrates optimal MDHP parameters with MDHP-LSTM blocks to enhance temporal feature extraction.
arXiv Detail & Related papers (2024-11-15T15:05:01Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion [2.3039261241391586]
This study employs the minhash algorithm to convert binary files of malware into grayscale images.
The study utilizes IDA Pro to decompile and extract opcode sequences, applying N-gram and tf-idf algorithms for feature vectorization.
A CNN-BiLSTM fusion model is designed to simultaneously process image features and opcode sequences, enhancing classification performance.
arXiv Detail & Related papers (2024-10-12T07:10:44Z) - MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning [4.475514208635884]
This study systematically profiles the (in)feasibility of learning for privacy-preserving cyber threat detection in terms of effectiveness, byzantine resilience, and efficiency.
It shows that FL-trained detection models can achieve a performance that is comparable to centrally trained counterparts.
Under a realistic threat model, FL turns out to be adversary-resistant to attacks of both data poisoning and model poisoning.
arXiv Detail & Related papers (2024-04-08T01:16:56Z) - Attention-GAN for Anomaly Detection: A Cutting-Edge Approach to
Cybersecurity Threat Management [0.0]
This paper proposes an innovative Attention-GAN framework for enhancing cybersecurity, focusing on anomaly detection.
The proposed approach aims to generate diverse and realistic synthetic attack scenarios, thereby enriching the dataset and improving threat identification.
Integrating attention mechanisms with Generative Adversarial Networks (GANs) is a key feature of the proposed method.
The attention-GAN framework has emerged as a pioneering approach, setting a new benchmark for advanced cyber-defense strategies.
arXiv Detail & Related papers (2024-02-25T01:10:55Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
Adversarial example detection plays a vital role in adaptive cyber defense, especially in the face of rapidly evolving attacks.
We propose a novel approach that leverages the power of BERT (Bidirectional Representations from Transformers) and introduces the concept of Space Exploration Features.
arXiv Detail & Related papers (2023-08-29T23:02:26Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptor is a system that facilitates threat hunting in computer systems using open-source Cyber Threat Intelligence (OSCTI)
It extracts structured threat behaviors from unstructured OSCTI text and uses a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities.
Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
arXiv Detail & Related papers (2020-10-26T14:54:01Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
This work aims to develop secure distributed algorithms to protect the learning from data poisoning and network attacks.
We establish a game-theoretic framework to capture the conflicting goals of a learner who uses distributed support vector machines (SVMs) and an attacker who is capable of modifying training data and labels.
The numerical results show that distributed SVM is prone to fail in different types of attacks, and their impact has a strong dependence on the network structure and attack capabilities.
arXiv Detail & Related papers (2020-03-08T18:54:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.