Vision Language Models as Values Detectors
- URL: http://arxiv.org/abs/2501.03957v1
- Date: Tue, 07 Jan 2025 17:37:57 GMT
- Title: Vision Language Models as Values Detectors
- Authors: Giulio Antonio Abbo, Tony Belpaeme,
- Abstract summary: This paper investigates the alignment between state-of-the-art Large Language Models and human annotators.
We created a set of twelve images depicting various domestic scenarios and enlisted fourteen annotators to identify the key element in each image.
We then compared these human responses with outputs from five different LLMs, including GPT-4o and four LLaVA variants.
- Score: 0.034530027457861996
- License:
- Abstract: Large Language Models integrating textual and visual inputs have introduced new possibilities for interpreting complex data. Despite their remarkable ability to generate coherent and contextually relevant text based on visual stimuli, the alignment of these models with human perception in identifying relevant elements in images requires further exploration. This paper investigates the alignment between state-of-the-art LLMs and human annotators in detecting elements of relevance within home environment scenarios. We created a set of twelve images depicting various domestic scenarios and enlisted fourteen annotators to identify the key element in each image. We then compared these human responses with outputs from five different LLMs, including GPT-4o and four LLaVA variants. Our findings reveal a varied degree of alignment, with LLaVA 34B showing the highest performance but still scoring low. However, an analysis of the results highlights the models' potential to detect value-laden elements in images, suggesting that with improved training and refined prompts, LLMs could enhance applications in social robotics, assistive technologies, and human-computer interaction by providing deeper insights and more contextually relevant responses.
Related papers
- VISTA: A Visual and Textual Attention Dataset for Interpreting Multimodal Models [2.0718016474717196]
integrated Vision and Language Models (VLMs) are frequently regarded as black boxes within the machine learning research community.
We present an image-text aligned human visual attention dataset that maps specific associations between image regions and corresponding text segments.
We then compare the internal heatmaps generated by VL models with this dataset, allowing us to analyze and better understand the model's decision-making process.
arXiv Detail & Related papers (2024-10-06T20:11:53Z) - Benchmarking Multi-Image Understanding in Vision and Language Models: Perception, Knowledge, Reasoning, and Multi-Hop Reasoning [15.296263261737026]
We introduce a Multi-Image MIRB Benchmark to evaluate visual language models' ability to compare, analyze, and reason across multiple images.
Our benchmark encompasses four categories: perception, visual world knowledge, reasoning, and multi-hop reasoning.
We demonstrate that while open-source VLMs were shown to approach the GPT-4V in single-image tasks, a significant gap remains in multi-image reasoning tasks.
arXiv Detail & Related papers (2024-06-18T16:02:18Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models [57.95366341738857]
In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept.
We propose a multiple attribute-centric evaluation benchmark, Finer, to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
arXiv Detail & Related papers (2024-02-26T05:43:51Z) - ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models [92.60282074937305]
We introduce ConTextual, a novel dataset featuring human-crafted instructions that require context-sensitive reasoning for text-rich images.
We conduct experiments to assess the performance of 14 foundation models and establish a human performance baseline.
We observe a significant performance gap of 30.8% between GPT-4V and human performance.
arXiv Detail & Related papers (2024-01-24T09:07:11Z) - A Vision Check-up for Language Models [61.852026871772914]
We show how a preliminary visual representation learning system can be trained using models of text.
Experiments on self-supervised visual representation learning highlight the potential to train vision models capable of making semantic assessments of natural images.
arXiv Detail & Related papers (2024-01-03T18:09:33Z) - Lost in Translation: When GPT-4V(ision) Can't See Eye to Eye with Text.
A Vision-Language-Consistency Analysis of VLLMs and Beyond [7.760124498553333]
We study whether vision-language models execute vision and language tasks consistently or independently.
We introduce a systematic framework that quantifies the capability disparities between different modalities in the multi-modal setting.
We introduce "Vision Description Prompting," a method that effectively improves performance in challenging vision-related tasks.
arXiv Detail & Related papers (2023-10-19T06:45:11Z) - Multimodal Deep Learning for Scientific Imaging Interpretation [0.0]
This study presents a novel methodology to linguistically emulate and evaluate human-like interactions with Scanning Electron Microscopy (SEM) images.
Our approach distills insights from both textual and visual data harvested from peer-reviewed articles.
Our model (GlassLLaVA) excels in crafting accurate interpretations, identifying key features, and detecting defects in previously unseen SEM images.
arXiv Detail & Related papers (2023-09-21T20:09:22Z) - TouchStone: Evaluating Vision-Language Models by Language Models [91.69776377214814]
We propose an evaluation method that uses strong large language models as judges to comprehensively evaluate the various abilities of LVLMs.
We construct a comprehensive visual dialogue dataset TouchStone, consisting of open-world images and questions, covering five major categories of abilities and 27 subtasks.
We demonstrate that powerful LVLMs, such as GPT-4, can effectively score dialogue quality by leveraging their textual capabilities alone.
arXiv Detail & Related papers (2023-08-31T17:52:04Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
We introduce a novel research problem of contextual object detection.
Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering.
We present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts.
arXiv Detail & Related papers (2023-05-29T17:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.