GPT-4V(ision) as a Generalist Evaluator for Vision-Language Tasks
- URL: http://arxiv.org/abs/2311.01361v1
- Date: Thu, 2 Nov 2023 16:11:09 GMT
- Title: GPT-4V(ision) as a Generalist Evaluator for Vision-Language Tasks
- Authors: Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan, Lianke Qin, Heng
Wang, Xifeng Yan, William Yang Wang, Linda Ruth Petzold
- Abstract summary: We validate GPT-4V's capabilities for evaluation purposes, addressing tasks ranging from foundational image-to-text and text-to-image synthesis to high-level image-to-image translations and multi-images to text alignment.
Notably, GPT-4V shows promising agreement with humans across various tasks and evaluation methods, demonstrating immense potential for multi-modal LLMs as evaluators.
- Score: 70.98062518872999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatically evaluating vision-language tasks is challenging, especially
when it comes to reflecting human judgments due to limitations in accounting
for fine-grained details. Although GPT-4V has shown promising results in
various multi-modal tasks, leveraging GPT-4V as a generalist evaluator for
these tasks has not yet been systematically explored. We comprehensively
validate GPT-4V's capabilities for evaluation purposes, addressing tasks
ranging from foundational image-to-text and text-to-image synthesis to
high-level image-to-image translations and multi-images to text alignment. We
employ two evaluation methods, single-answer grading and pairwise comparison,
using GPT-4V. Notably, GPT-4V shows promising agreement with humans across
various tasks and evaluation methods, demonstrating immense potential for
multi-modal LLMs as evaluators. Despite limitations like restricted visual
clarity grading and real-world complex reasoning, its ability to provide
human-aligned scores enriched with detailed explanations is promising for
universal automatic evaluator.
Related papers
- Putting GPT-4o to the Sword: A Comprehensive Evaluation of Language, Vision, Speech, and Multimodal Proficiency [3.161954199291541]
This research study comprehensively evaluates the language, vision, speech, and multimodal capabilities of GPT-4o.
GPT-4o demonstrates high accuracy and efficiency across multiple domains in language and reasoning capabilities.
The model shows variability and faces limitations in handling complex and ambiguous inputs.
arXiv Detail & Related papers (2024-06-19T19:00:21Z) - Vision-Flan: Scaling Human-Labeled Tasks in Visual Instruction Tuning [53.93074108238167]
We construct Vision-Flan, the most diverse publicly available visual instruction tuning dataset to date.
We propose a two-stage instruction tuning framework, in which VLMs are finetuned on Vision-Flan and further tuned on GPT-4 synthesized data.
We find this two-stage tuning framework significantly outperforms the traditional single-stage visual instruction tuning framework.
arXiv Detail & Related papers (2024-02-18T19:38:44Z) - Gemini vs GPT-4V: A Preliminary Comparison and Combination of
Vision-Language Models Through Qualitative Cases [98.35348038111508]
This paper presents an in-depth comparative study of two pioneering models: Google's Gemini and OpenAI's GPT-4V(ision)
The core of our analysis delves into the distinct visual comprehension abilities of each model.
Our findings illuminate the unique strengths and niches of both models.
arXiv Detail & Related papers (2023-12-22T18:59:58Z) - GPT-4V with Emotion: A Zero-shot Benchmark for Generalized Emotion Recognition [38.2581985358104]
GPT-4 with Vision (GPT-4V) has demonstrated remarkable visual capabilities across various tasks, but its performance in emotion recognition has not been fully evaluated.
We present the quantitative evaluation results of GPT-4V on 21 benchmark datasets covering 6 tasks.
arXiv Detail & Related papers (2023-12-07T13:27:37Z) - Comparing Humans, GPT-4, and GPT-4V On Abstraction and Reasoning Tasks [53.936643052339]
We evaluate the reasoning abilities of text-only and multimodal versions of GPT-4.
Our experimental results support the conclusion that neither version of GPT-4 has developed robust abstraction abilities at humanlike levels.
arXiv Detail & Related papers (2023-11-14T04:33:49Z) - A Systematic Evaluation of GPT-4V's Multimodal Capability for Medical
Image Analysis [87.25494411021066]
GPT-4V's multimodal capability for medical image analysis is evaluated.
It is found that GPT-4V excels in understanding medical images and generates high-quality radiology reports.
It is found that its performance for medical visual grounding needs to be substantially improved.
arXiv Detail & Related papers (2023-10-31T11:39:09Z) - An Early Evaluation of GPT-4V(ision) [40.866323649060696]
We evaluate different abilities of GPT-4V including visual understanding, language understanding, visual puzzle solving, and understanding of other modalities such as depth, thermal, video, and audio.
To estimate GPT-4V's performance, we manually construct 656 test instances and carefully evaluate the results of GPT-4V.
arXiv Detail & Related papers (2023-10-25T10:33:17Z) - Lost in Translation: When GPT-4V(ision) Can't See Eye to Eye with Text.
A Vision-Language-Consistency Analysis of VLLMs and Beyond [7.760124498553333]
We study whether vision-language models execute vision and language tasks consistently or independently.
We introduce a systematic framework that quantifies the capability disparities between different modalities in the multi-modal setting.
We introduce "Vision Description Prompting," a method that effectively improves performance in challenging vision-related tasks.
arXiv Detail & Related papers (2023-10-19T06:45:11Z) - The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) [121.42924593374127]
We analyze the latest model, GPT-4V, to deepen the understanding of LMMs.
GPT-4V's unprecedented ability in processing arbitrarily interleaved multimodal inputs makes it a powerful multimodal generalist system.
GPT-4V's unique capability of understanding visual markers drawn on input images can give rise to new human-computer interaction methods.
arXiv Detail & Related papers (2023-09-29T17:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.