論文の概要: A Generative AI-driven Metadata Modelling Approach
- arxiv url: http://arxiv.org/abs/2501.04008v1
- Date: Fri, 13 Dec 2024 09:26:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-12 16:25:18.967517
- Title: A Generative AI-driven Metadata Modelling Approach
- Title(参考訳): 生成型AI駆動型メタデータモデリングアプローチ
- Authors: Mayukh Bagchi,
- Abstract要約: 本稿では,ジェネレーティブなAI駆動型Human-Large Language Model (LLM) を用いたメタデータモデリング手法を提案する。
- 参考スコア(独自算出の注目度): 1.450405446885067
- License:
- Abstract: Since decades, the modelling of metadata has been core to the functioning of any academic library. Its importance has only enhanced with the increasing pervasiveness of Generative Artificial Intelligence (AI)-driven information activities and services which constitute a library's outreach. However, with the rising importance of metadata, there arose several outstanding problems with the process of designing a library metadata model impacting its reusability, crosswalk and interoperability with other metadata models. This paper posits that the above problems stem from an underlying thesis that there should only be a few core metadata models which would be necessary and sufficient for any information service using them, irrespective of the heterogeneity of intra-domain or inter-domain settings. To that end, this paper advances a contrary view of the above thesis and substantiates its argument in three key steps. First, it introduces a novel way of thinking about a library metadata model as an ontology-driven composition of five functionally interlinked representation levels from perception to its intensional definition via properties. Second, it introduces the representational manifoldness implicit in each of the five levels which cumulatively contributes to a conceptually entangled library metadata model. Finally, and most importantly, it proposes a Generative AI-driven Human-Large Language Model (LLM) collaboration based metadata modelling approach to disentangle the entanglement inherent in each representation level leading to the generation of a conceptually disentangled metadata model. Throughout the paper, the arguments are exemplified by motivating scenarios and examples from representative libraries handling cancer information.
- Abstract(参考訳): 何十年もの間、メタデータのモデリングはあらゆる学術図書館の機能の中核をなしてきた。
その重要性は、図書館のアウトリーチを構成する、生成人工知能(AI)駆動の情報活動やサービスの普及によってのみ強化されている。
しかし、メタデータの重要性が高まるにつれて、ライブラリメタデータモデルを設計する過程で、その再利用性、横断歩道、他のメタデータモデルとの相互運用性に影響を与えるいくつかの際立った問題が発生した。
本稿では,ドメイン内設定やドメイン間設定の不均一性に関わらず,それらを利用する情報サービスに必要なコアメタデータモデルがいくつか存在する,という基本的な主張から,上記の問題が引き起こされていることを示唆する。
そこで,本稿では,上記の論文の反対の見解を推し進め,その議論を3つの重要なステップで裏付ける。
まず,5つの機能的相互結合表現のオントロジー的構成として,図書館のメタデータモデルを考える方法を紹介した。
第二に、概念的に絡み合ったライブラリメタデータモデルに累積的に寄与する5つのレベルそれぞれに暗黙的な表現多様体性を導入する。
最後に、さらに重要なのは、ジェネレーティブAI駆動のヒューマンラージ言語モデル(LLM)コラボレーションベースのメタデータモデリングアプローチを提案し、各表現レベルに固有の絡み合いを解消し、概念的に非絡み合いのあるメタデータモデルを生成する。
論文全体を通して,がん情報を扱う代表的な図書館のシナリオと事例をモチベーションすることで,議論を実証する。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA) と呼ばれる新しいモデルに依存しないフレームワークを提案する。
CEFAは機能アライメントモジュールとコンテキスト拡張モジュールで構成される。
本手法は, 稀なカテゴリにおけるHOIモデルの検出性能を向上させるために, プラグアンドプレイモジュールとして機能する。
論文 参考訳(メタデータ) (2024-07-31T08:42:48Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
限られたデータセットに基づいて,効率的な自己回帰に基づく視覚モデルを構築する。
このモデルは,高レベル・低レベルのセマンティック理解の両方にまたがる視覚的タスクにおいて,その習熟度をいかに達成するかを実証する。
我々の経験的評価は、モデルが様々なタスクに適応する際の機敏さを強調し、パラメータフットプリントの大幅な削減を図った。
論文 参考訳(メタデータ) (2024-02-07T13:41:53Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
我々は、世界的知識の源として各エンティティに関連するメタ機能を活用し、モデルからエンティティ表現を採用する。
本稿では,これらの表現とメタ機能との整合性を,事前学習モデルの評価指標として用いることを提案する。
提案手法の有効性は,関係データセットを用いたモデル,大規模言語モデル,画像モデルなど,様々な領域で実証されている。
論文 参考訳(メタデータ) (2024-01-02T17:08:26Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
合成画像検索(CIR)の問題点を考察する。
テキストや画像などのマルチモーダル情報を融合し、クエリにマッチする画像を正確に検索し、ユーザの表現能力を拡張できるモデルをトレーニングすることを目的としている。
論文 参考訳(メタデータ) (2023-06-12T17:56:01Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - T-METASET: Task-Aware Generation of Metamaterial Datasets by
Diversity-Based Active Learning [14.668178146934588]
タスク対応データセット生成のためのインテリジェントなデータ取得フレームワークであるt-METASETを提案する。
提案するフレームワークを,汎用性,タスク認識性,カスタマイズ可能な3つのシナリオで検証する。
論文 参考訳(メタデータ) (2022-02-21T22:46:49Z) - Mapping the Internet: Modelling Entity Interactions in Complex
Heterogeneous Networks [0.0]
サンプル表現、モデル定義、トレーニングのための汎用性のある統一フレームワークHMill'を提案します。
フレームワークに実装されたモデルによって実現されたすべての関数の集合に対する普遍近似定理の拡張を示す。
このフレームワークを使ってサイバーセキュリティドメインから3つの異なる問題を解決する。
論文 参考訳(メタデータ) (2021-04-19T21:32:44Z) - Learning Abstract Task Representations [0.6690874707758511]
深層ニューラルネットワークにおける潜伏変数としての新しい抽象メタ特徴を誘導する手法を提案する。
深層ニューラルネットワークを特徴抽出器として用いた手法を実証する。
論文 参考訳(メタデータ) (2021-01-19T20:31:02Z) - Learning to Generalize Unseen Domains via Memory-based Multi-Source
Meta-Learning for Person Re-Identification [59.326456778057384]
本稿では,メモリベースのマルチソースメタラーニングフレームワークを提案する。
また,メタテスト機能を多様化するメタバッチ正規化層(MetaBN)を提案する。
実験により、M$3$Lは、目に見えない領域に対するモデルの一般化能力を効果的に向上できることが示された。
論文 参考訳(メタデータ) (2020-12-01T11:38:16Z) - Unsupervised Meta-Learning through Latent-Space Interpolation in
Generative Models [11.943374020641214]
生成モデルを用いてメタタスクを生成する手法について述べる。
提案手法であるLAtent Space Interpolation Unsupervised Meta-learning (LASium)が,現在の教師なし学習ベースラインよりも優れているか,あるいは競合していることがわかった。
論文 参考訳(メタデータ) (2020-06-18T02:10:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。