Multi-SpaCE: Multi-Objective Subsequence-based Sparse Counterfactual Explanations for Multivariate Time Series Classification
- URL: http://arxiv.org/abs/2501.04009v1
- Date: Sat, 14 Dec 2024 09:21:44 GMT
- Title: Multi-SpaCE: Multi-Objective Subsequence-based Sparse Counterfactual Explanations for Multivariate Time Series Classification
- Authors: Mario Refoyo, David Luengo,
- Abstract summary: Multi-SpaCE balances proximity, sparsity, plausibility, and contiguity in time series data.<n>It consistently achieves perfect validity and delivers superior performance compared to existing methods.
- Score: 3.8305310459921587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning systems excel in complex tasks but often lack transparency, limiting their use in critical applications. Counterfactual explanations, a core tool within eXplainable Artificial Intelligence (XAI), offer insights into model decisions by identifying minimal changes to an input to alter its predicted outcome. However, existing methods for time series data are limited by univariate assumptions, rigid constraints on modifications, or lack of validity guarantees. This paper introduces Multi-SpaCE, a multi-objective counterfactual explanation method for multivariate time series. Using non-dominated ranking genetic algorithm II (NSGA-II), Multi-SpaCE balances proximity, sparsity, plausibility, and contiguity. Unlike most methods, it ensures perfect validity, supports multivariate data and provides a Pareto front of solutions, enabling flexibility to different end-user needs. Comprehensive experiments in diverse datasets demonstrate the ability of Multi-SpaCE to consistently achieve perfect validity and deliver superior performance compared to existing methods.
Related papers
- Continual Multimodal Contrastive Learning [70.60542106731813]
Multimodal contrastive learning (MCL) advances in aligning different modalities and generating multimodal representations in a joint space.
However, a critical yet often overlooked challenge remains: multimodal data is rarely collected in a single process, and training from scratch is computationally expensive.
In this paper, we formulate CMCL through two specialized principles of stability and plasticity.
We theoretically derive a novel optimization-based method, which projects updated gradients from dual sides onto subspaces where any gradient is prevented from interfering with the previously learned knowledge.
arXiv Detail & Related papers (2025-03-19T07:57:08Z) - Robust Multi-View Learning via Representation Fusion of Sample-Level Attention and Alignment of Simulated Perturbation [61.64052577026623]
Real-world multi-view datasets are often heterogeneous and imperfect.
We propose a novel robust MVL method (namely RML) with simultaneous representation fusion and alignment.
In experiments, we employ it in unsupervised multi-view clustering, noise-label classification, and as a plug-and-play module for cross-modal hashing retrieval.
arXiv Detail & Related papers (2025-03-06T07:01:08Z) - AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting [10.899510048905926]
We present adapters for managing intricate dependencies among features and quantifying uncertainty in predictions.
Experiments conducted on both synthetic and real-world datasets confirm the efficacy of adapters.
Our framework, AdaPTS, positions adapters as a modular, scalable, and effective solution.
arXiv Detail & Related papers (2025-02-14T15:46:19Z) - DRFormer: Multi-Scale Transformer Utilizing Diverse Receptive Fields for Long Time-Series Forecasting [3.420673126033772]
We propose a dynamic tokenizer with a dynamic sparse learning algorithm to capture diverse receptive fields and sparse patterns of time series data.
Our proposed model, named DRFormer, is evaluated on various real-world datasets, and experimental results demonstrate its superiority compared to existing methods.
arXiv Detail & Related papers (2024-08-05T07:26:47Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Robust Multimodal Learning with Missing Modalities via Parameter-Efficient Adaptation [16.17270247327955]
We propose a simple and parameter-efficient adaptation procedure for pretrained multimodal networks.
We demonstrate that such adaptation can partially bridge performance drop due to missing modalities.
Our proposed method demonstrates versatility across various tasks and datasets, and outperforms existing methods for robust multimodal learning with missing modalities.
arXiv Detail & Related papers (2023-10-06T03:04:21Z) - MULTIGAIN 2.0: MDP controller synthesis for multiple mean-payoff, LTL and steady-state constraints [41.94295877935867]
We present MULTIGAIN 2.0, a major extension to the controller synthesis tool MULTIGAIN.
It is built on top of the probabilistic model checker PRISM.
arXiv Detail & Related papers (2023-05-26T08:59:51Z) - A Unifying Perspective on Multi-Calibration: Game Dynamics for
Multi-Objective Learning [63.20009081099896]
We provide a unifying framework for the design and analysis of multicalibrated predictors.
We exploit connections to game dynamics to achieve state-of-the-art guarantees for a diverse set of multicalibration learning problems.
arXiv Detail & Related papers (2023-02-21T18:24:17Z) - Generalizing Multimodal Variational Methods to Sets [35.69942798534849]
This paper presents a novel variational method on sets called the Set Multimodal VAE (SMVAE) for learning a multimodal latent space.
By modeling the joint-modality posterior distribution directly, the proposed SMVAE learns to exchange information between multiple modalities and compensate for the drawbacks caused by factorization.
arXiv Detail & Related papers (2022-12-19T23:50:19Z) - Mitigating Gradient Bias in Multi-objective Learning: A Provably Convergent Stochastic Approach [38.76462300149459]
We develop a Multi-objective Correction (MoCo) method for multi-objective gradient optimization.
The unique feature of our method is that it can guarantee convergence without increasing the non fairness gradient.
arXiv Detail & Related papers (2022-10-23T05:54:26Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
We propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly, applicable for both multimodal fusion and multitask learning.
CEN dynamically exchanges channels betweenworks of different modalities.
For the application of dense image prediction, the validity of CEN is tested by four different scenarios.
arXiv Detail & Related papers (2021-12-04T05:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.