MULTIGAIN 2.0: MDP controller synthesis for multiple mean-payoff, LTL and steady-state constraints
- URL: http://arxiv.org/abs/2305.16752v2
- Date: Thu, 2 May 2024 11:13:27 GMT
- Title: MULTIGAIN 2.0: MDP controller synthesis for multiple mean-payoff, LTL and steady-state constraints
- Authors: Severin Bals, Alexandros Evangelidis, Jan Křetínský, Jakob Waibel,
- Abstract summary: We present MULTIGAIN 2.0, a major extension to the controller synthesis tool MULTIGAIN.
It is built on top of the probabilistic model checker PRISM.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present MULTIGAIN 2.0, a major extension to the controller synthesis tool MULTIGAIN, built on top of the probabilistic model checker PRISM. This new version extends MULTIGAIN's multi-objective capabilities, by allowing for the formal verification and synthesis of controllers for probabilistic systems with multi-dimensional long-run average reward structures, steady-state constraints, and linear temporal logic properties. Additionally, MULTIGAIN 2.0 can modify the underlying linear program to prevent unbounded-memory and other unintuitive solutions and visualizes Pareto curves, in the two- and three-dimensional cases, to facilitate trade-off analysis in multi-objective scenarios.
Related papers
- Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities [69.26544016976396]
We exploit the redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality.
We preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality.
arXiv Detail & Related papers (2025-03-28T15:21:24Z) - Explainable AI for Multivariate Time Series Pattern Exploration: Latent Space Visual Analytics with Temporal Fusion Transformer and Variational Autoencoders in Power Grid Event Diagnosis [1.170167705525779]
This paper proposes a novel visual analytics framework that integrates two generative AI models, Temporal Fusion Transformer (TFT) and Variational Autoencoders (VAEs)
It reduces complex patterns into lower-dimensional latent spaces and visualizes them in 2D using dimensionality reduction techniques such as PCA, t-SNE, and UMAP with DBSCAN.
The framework is demonstrated through a case study on power grid signal data, where it identifies multi-label grid event signatures, including faults and anomalies with diverse root causes.
arXiv Detail & Related papers (2024-12-20T17:41:11Z) - Multi-SpaCE: Multi-Objective Subsequence-based Sparse Counterfactual Explanations for Multivariate Time Series Classification [3.8305310459921587]
Multi-SpaCE balances proximity, sparsity, plausibility, and contiguity in time series data.
It consistently achieves perfect validity and delivers superior performance compared to existing methods.
arXiv Detail & Related papers (2024-12-14T09:21:44Z) - GSIFN: A Graph-Structured and Interlaced-Masked Multimodal Transformer-based Fusion Network for Multimodal Sentiment Analysis [0.0]
Multimodal Sentiment Analysis (MSA) leverages multiple data modals to analyze human sentiment.
Existing MSA models generally employ cutting-edge multimodal fusion and representation learning-based methods to promote MSA capability.
Our proposed GSIFN incorporates two main components to solve these problems: (i) a graph-structured and interlaced-masked multimodal Transformer.
It adopts the Interlaced Mask mechanism to construct robust multimodal graph embedding, achieve all-modal-in-one Transformer-based fusion, and greatly reduce the computational overhead.
arXiv Detail & Related papers (2024-08-27T06:44:28Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
We introduce a Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
arXiv Detail & Related papers (2024-08-07T12:42:09Z) - VoCoT: Unleashing Visually Grounded Multi-Step Reasoning in Large Multi-Modal Models [32.10766568096317]
This paper proposes VoCoT, a multi-step Visually grounded object-centric Chain-of-Thought reasoning framework tailored for inference with LMMs.
VoCoT is characterized by two key features: (1) object-centric reasoning paths that revolve around cross-modal shared object-level information, and (2) visually grounded representation of object concepts in a multi-modal interleaved and aligned manner.
arXiv Detail & Related papers (2024-05-27T08:12:00Z) - Deriving Compact QUBO Models via Multilevel Constraint Transformation [0.8192907805418583]
We propose a novel Multilevel Constraint Transformation Scheme (MLCTS) that derives QUBO models with fewer ancillary binary variables.
For a proof-of-concept, we compare the performance of two QUBO models for the latter problem on both a general-purpose software-based solver and a hardware-based QUBO solver.
The MLCTS-derived models demonstrate significantly better performance for both solvers, in particular, solving up to seven times more instances with the hardware-based approach.
arXiv Detail & Related papers (2024-04-04T17:34:08Z) - MADTP: Multimodal Alignment-Guided Dynamic Token Pruning for
Accelerating Vision-Language Transformer [66.71930982549028]
Vision-Language Transformers (VLTs) have shown great success recently, but are accompanied by heavy computation costs.
We propose a novel framework named Multimodal Alignment-Guided Dynamic Token Pruning (MADTP) for accelerating various VLTs.
arXiv Detail & Related papers (2024-03-05T14:13:50Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Evaluation of large language models for assessing code maintainability [4.2909314120969855]
We investigate the association between the cross-entropy of code generated by ten different models and quality aspects.
Our results show that, controlling for the number of logical lines of codes, cross-entropy computed by LLMs is indeed a predictor of maintainability on a class level.
While the complexity of LLMs affects the range of cross-entropy, this plays a significant role in predicting maintainability aspects.
arXiv Detail & Related papers (2024-01-23T12:29:42Z) - Efficiently Controlling Multiple Risks with Pareto Testing [34.83506056862348]
We propose a two-stage process which combines multi-objective optimization with multiple hypothesis testing.
We demonstrate the effectiveness of our approach to reliably accelerate the execution of large-scale Transformer models in natural language processing (NLP) applications.
arXiv Detail & Related papers (2022-10-14T15:54:39Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.