Fuzzy Information Entropy and Region Biased Matrix Factorization for Web Service QoS Prediction
- URL: http://arxiv.org/abs/2501.04063v2
- Date: Fri, 10 Jan 2025 07:44:50 GMT
- Title: Fuzzy Information Entropy and Region Biased Matrix Factorization for Web Service QoS Prediction
- Authors: Guoxing Tang, Yugen Du, Xia Chen, Yingwei Luo, Benchi Ma,
- Abstract summary: This paper proposes a matrix factorization approach based on user information entropy and region bias.
It incorporates the region bias between each user and service linearly into matrix factorization to capture the non-interactive features between users and services.
The proposed method outperforms some of the state-of-the-art methods in the field at matrix densities ranging from 5% to 20%.
- Score: 2.0475265337665336
- License:
- Abstract: Nowadays, there are many similar services available on the internet, making Quality of Service (QoS) a key concern for users. Since collecting QoS values for all services through user invocations is impractical, predicting QoS values is a more feasible approach. Matrix factorization is considered an effective prediction method. However, most existing matrix factorization algorithms focus on capturing global similarities between users and services, overlooking the local similarities between users and their similar neighbors, as well as the non-interactive effects between users and services. This paper proposes a matrix factorization approach based on user information entropy and region bias, which utilizes a similarity measurement method based on fuzzy information entropy to identify similar neighbors of users. Simultaneously, it integrates the region bias between each user and service linearly into matrix factorization to capture the non-interactive features between users and services. This method demonstrates improved predictive performance in more realistic and complex network environments. Additionally, numerous experiments are conducted on real-world QoS datasets. The experimental results show that the proposed method outperforms some of the state-of-the-art methods in the field at matrix densities ranging from 5% to 20%.
Related papers
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Understanding and Scaling Collaborative Filtering Optimization from the Perspective of Matrix Rank [48.02330727538905]
Collaborative Filtering (CF) methods dominate real-world recommender systems.
We study the properties of the embedding tables under different learning strategies.
We propose an efficient warm-start strategy that regularizes the stable rank of the user and item embeddings.
arXiv Detail & Related papers (2024-10-15T21:54:13Z) - Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Initializing Services in Interactive ML Systems for Diverse Users [29.445931639366325]
We study ML systems that interactively learn from users across multiple subpopulations with heterogeneous data distributions.
We propose a randomized algorithm to adaptively select very few users to collect preference data from, while simultaneously initializing a set of services.
arXiv Detail & Related papers (2023-12-19T04:26:12Z) - TPMCF: Temporal QoS Prediction using Multi-Source Collaborative Features [0.5161531917413706]
Temporal Prediction is essential to identify a suitable service over time.
Recent methods hardly achieved desired accuracy due to various limitations.
This paper proposes a scalable strategy for Temporal Prediction using Multi-source Collaborative-Features.
arXiv Detail & Related papers (2023-03-30T06:49:53Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
arXiv Detail & Related papers (2021-12-17T12:47:18Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - A Soft Recommender System for Social Networks [1.8275108630751844]
Recent social recommender systems benefit from friendship graph to make an accurate recommendation.
We went a step further to identify true friends for making even more realistic recommendations.
We calculated the similarity between users, as well as the dependency between a user and an item.
arXiv Detail & Related papers (2020-01-08T13:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.