NeRFs are Mirror Detectors: Using Structural Similarity for Multi-View Mirror Scene Reconstruction with 3D Surface Primitives
- URL: http://arxiv.org/abs/2501.04074v1
- Date: Tue, 07 Jan 2025 18:59:53 GMT
- Title: NeRFs are Mirror Detectors: Using Structural Similarity for Multi-View Mirror Scene Reconstruction with 3D Surface Primitives
- Authors: Leif Van Holland, Michael Weinmann, Jan U. Müller, Patrick Stotko, Reinhard Klein,
- Abstract summary: We present NeRF-MD, a method which shows that NeRFs can be considered as mirror detectors.
We first compute an initial estimate of the scene geometry by training a standard NeRF.
We then jointly optimize the radiance field and mirror geometry in a second training stage to refine their quality.
- Score: 7.116175288307167
- License:
- Abstract: While neural radiance fields (NeRF) led to a breakthrough in photorealistic novel view synthesis, handling mirroring surfaces still denotes a particular challenge as they introduce severe inconsistencies in the scene representation. Previous attempts either focus on reconstructing single reflective objects or rely on strong supervision guidance in terms of additional user-provided annotations of visible image regions of the mirrors, thereby limiting the practical usability. In contrast, in this paper, we present NeRF-MD, a method which shows that NeRFs can be considered as mirror detectors and which is capable of reconstructing neural radiance fields of scenes containing mirroring surfaces without the need for prior annotations. To this end, we first compute an initial estimate of the scene geometry by training a standard NeRF using a depth reprojection loss. Our key insight lies in the fact that parts of the scene corresponding to a mirroring surface will still exhibit a significant photometric inconsistency, whereas the remaining parts are already reconstructed in a plausible manner. This allows us to detect mirror surfaces by fitting geometric primitives to such inconsistent regions in this initial stage of the training. Using this information, we then jointly optimize the radiance field and mirror geometry in a second training stage to refine their quality. We demonstrate the capability of our method to allow the faithful detection of mirrors in the scene as well as the reconstruction of a single consistent scene representation, and demonstrate its potential in comparison to baseline and mirror-aware approaches.
Related papers
- Planar Reflection-Aware Neural Radiance Fields [32.709468082010126]
We introduce a reflection-aware NeRF that jointly models planar reflectors, such as windows, and explicitly casts reflected rays to capture the source of the high-frequency reflections.
Rendering along the primary ray results in a clean, reflection-free view, while explicitly rendering along the reflected ray allows us to reconstruct highly detailed reflections.
arXiv Detail & Related papers (2024-11-07T18:55:08Z) - NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSP is a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency.
We achieve the state-of-the-art surface reconstruction results with only 6 views as input.
arXiv Detail & Related papers (2024-06-11T09:53:18Z) - UniSDF: Unifying Neural Representations for High-Fidelity 3D Reconstruction of Complex Scenes with Reflections [87.191742674543]
We propose UniSDF, a general purpose 3D reconstruction method that can reconstruct large complex scenes with reflections.
Our method is able to robustly reconstruct complex large-scale scenes with fine details and reflective surfaces, leading to the best overall performance.
arXiv Detail & Related papers (2023-12-20T18:59:42Z) - TraM-NeRF: Tracing Mirror and Near-Perfect Specular Reflections through
Neural Radiance Fields [3.061835990893184]
Implicit representations like Neural Radiance Fields (NeRF) showed impressive results for rendering of complex scenes with fine details.
We present a novel reflection tracing method tailored for the involved volume rendering within NeRF.
We derive efficient strategies for importance sampling and the transmittance computation along rays from only few samples.
arXiv Detail & Related papers (2023-10-16T17:59:56Z) - Mirror-NeRF: Learning Neural Radiance Fields for Mirrors with
Whitted-Style Ray Tracing [33.852910220413655]
We present a novel neural rendering framework, named Mirror-NeRF, which is able to learn accurate geometry and reflection of the mirror.
Mirror-NeRF supports various scene manipulation applications with mirrors, such as adding new objects or mirrors into the scene and synthesizing the reflections of these new objects in mirrors.
arXiv Detail & Related papers (2023-08-07T03:48:07Z) - SNeS: Learning Probably Symmetric Neural Surfaces from Incomplete Data [77.53134858717728]
We build on the strengths of recent advances in neural reconstruction and rendering such as Neural Radiance Fields (NeRF)
We apply a soft symmetry constraint to the 3D geometry and material properties, having factored appearance into lighting, albedo colour and reflectivity.
We show that it can reconstruct unobserved regions with high fidelity and render high-quality novel view images.
arXiv Detail & Related papers (2022-06-13T17:37:50Z) - NeRFReN: Neural Radiance Fields with Reflections [16.28256369376256]
We introduce NeRFReN, which is built upon NeRF to model scenes with reflections.
We propose to split a scene into transmitted and reflected components, and model the two components with separate neural radiance fields.
Experiments on various self-captured scenes show that our method achieves high-quality novel view synthesis and physically sound depth estimation results.
arXiv Detail & Related papers (2021-11-30T09:36:00Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
We present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR)
RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis.
Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
arXiv Detail & Related papers (2020-12-02T03:14:57Z) - Neural Reflectance Fields for Appearance Acquisition [61.542001266380375]
We present Neural Reflectance Fields, a novel deep scene representation that encodes volume density, normal and reflectance properties at any 3D point in a scene.
We combine this representation with a physically-based differentiable ray marching framework that can render images from a neural reflectance field under any viewpoint and light.
arXiv Detail & Related papers (2020-08-09T22:04:36Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.