Mixing Times and Privacy Analysis for the Projected Langevin Algorithm under a Modulus of Continuity
- URL: http://arxiv.org/abs/2501.04134v1
- Date: Tue, 07 Jan 2025 20:46:59 GMT
- Title: Mixing Times and Privacy Analysis for the Projected Langevin Algorithm under a Modulus of Continuity
- Authors: Mario Bravo, Juan P. Flores-Mella, Cristóbal Guzmán,
- Abstract summary: We study the mixing time of the projected Langevin algorithm (LA) and the privacy curve of noisy Gradient Descent (SGD)
Specifically, we derive new mixing time bounds for the projected LA which are, in some important cases, dimension-free and poly-logarithmic.
We establish new upper bounds for the privacy curve of the subsampled noisy SGD algorithm.
- Score: 7.318997639507269
- License:
- Abstract: We study the mixing time of the projected Langevin algorithm (LA) and the privacy curve of noisy Stochastic Gradient Descent (SGD), beyond nonexpansive iterations. Specifically, we derive new mixing time bounds for the projected LA which are, in some important cases, dimension-free and poly-logarithmic on the accuracy, closely matching the existing results in the smooth convex case. Additionally, we establish new upper bounds for the privacy curve of the subsampled noisy SGD algorithm. These bounds show a crucial dependency on the regularity of gradients, and are useful for a wide range of convex losses beyond the smooth case. Our analysis relies on a suitable extension of the Privacy Amplification by Iteration (PABI) framework (Feldman et al., 2018; Altschuler and Talwar, 2022, 2023) to noisy iterations whose gradient map is not necessarily nonexpansive. This extension is achieved by designing an optimization problem which accounts for the best possible R\'enyi divergence bound obtained by an application of PABI, where the tractability of the problem is crucially related to the modulus of continuity of the associated gradient mapping. We show that, in several interesting cases -- including the nonsmooth convex, weakly smooth and (strongly) dissipative -- such optimization problem can be solved exactly and explicitly. This yields the tightest possible PABI-based bounds, where our results are either new or substantially sharper than those in previous works.
Related papers
- Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
User-level differentially private convex optimization (DP-SCO) has garnered significant attention due to the importance of safeguarding user privacy in machine learning applications.
Current methods, such as those based on differentially private gradient descent (DP-SGD), often struggle with high noise accumulation and suboptimal utility.
We introduce a novel linear-time algorithm that leverages robust statistics, specifically the median and trimmed mean, to overcome these challenges.
arXiv Detail & Related papers (2025-02-13T02:05:45Z) - From Gradient Clipping to Normalization for Heavy Tailed SGD [19.369399536643773]
Recent empirical evidence indicates that machine learning applications involve heavy-tailed noise, which challenges the standard assumptions of bounded variance in practice.
In this paper, we show that it is possible to achieve tightness of the gradient-dependent noise convergence problem under tailed noise.
arXiv Detail & Related papers (2024-10-17T17:59:01Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
We consider clipped optimization problems with heavy-tailed noise with structured density.
We show that it is possible to get faster rates of convergence than $mathcalO(K-(alpha - 1)/alpha)$, when the gradients have finite moments of order.
We prove that the resulting estimates have negligible bias and controllable variance.
arXiv Detail & Related papers (2023-11-07T17:39:17Z) - Efficient Private SCO for Heavy-Tailed Data via Averaged Clipping [40.69950711262191]
We consider differentially private convex optimization for heavy-tailed data with the guarantee of being differentially private (DP)
We establish new convergence results and improved complexity bounds for the proposed algorithm called AClipped-dpSGD for constrained and unconstrained convex problems.
arXiv Detail & Related papers (2022-06-27T01:39:15Z) - Differential Privacy Guarantees for Stochastic Gradient Langevin
Dynamics [2.9477900773805032]
We show that the privacy loss converges exponentially fast for smooth and strongly convex objectives under constant step size.
We propose an implementation and our experiments show the practical utility of our approach compared to classical DP-SGD libraries.
arXiv Detail & Related papers (2022-01-28T08:21:31Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses [52.039438701530905]
We provide sharp upper and lower bounds for several forms of gradient descent (SGD) on arbitrary Lipschitz nonsmooth convex losses.
Our bounds allow us to derive a new algorithm for differentially private nonsmooth convex optimization with optimal excess population risk.
arXiv Detail & Related papers (2020-06-12T02:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.